Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}\)
Ta có: \(\frac{xy+2x+1}{xy+x+y+1}=\frac{\left(xy+x\right)+\left(x+1\right)}{\left(xy+x\right)+\left(y+1\right)}=\frac{x\left(y+1\right)+\left(x+1\right)}{\left(y+1\right)\left(x+1\right)}=\frac{x}{x+1}+\frac{1}{y+1}\)
Tương tự ta có:
\(\frac{yz+2y+1}{yz+y+z+1}=\frac{y}{y+1}+\frac{1}{z+1}\)
\(\frac{zx+2z+1}{zx+z+x+1}=\frac{z}{z+1}+\frac{1}{x+1}\)
Từ đây ta có biểu thức ban đầu sẽ bằng
\(\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}\)
\(\left(\frac{x}{x+1}+\frac{1}{x+1}\right)+\left(\frac{y}{y+1}+\frac{1}{y+1}\right)+\left(\frac{z}{z+1}+\frac{1}{z+1}\right)=1+1+1=3\)
CHÚ Ý: ab+a+b+1=a(b+1)+(b+1)=(a+1)(b+1)
Xét: \(\frac{xy+2x+1}{xy+x+y+1}=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}=\frac{x}{x+1}+\frac{1}{y+1}\)
Tương tự với 2 biểu thức còn lại ta được:
A=\(\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}\)
=\(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}=\frac{x^2-y^2+xz-yz}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)
\(\Rightarrow\frac{x^2-yz}{x-xyz}=x+y+z\)
\(\Rightarrow x^2-yz=\left(x-xyz\right)\left(x+y+z\right)\)
\(\Rightarrow x^2-yz=x\left(x-xyz\right)+y\left(x-xyz\right)+z\left(x-xyz\right)\)
\(\Rightarrow x^2-yz=x^2-x^2yz+xy-xy^2z+xz-xyz^2\)
\(\Rightarrow-yz-xy-xz=-x^2yz-xy^2z-xyz^2\)
\(\Rightarrow-\left(yz+xy+xz\right)=-\left(x^2yz+xy^2z+xyz^2\right)\)
\(\Rightarrow yz+xy+xz=x^2yz+xy^2z+xyz^2\)
\(\Rightarrow yz+xy+xz=xyz\left(x+y+z\right)\)
Vậy nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) thì \(yz+xy+xz=xyz\left(x+y+z\right)\)