\(\left(\frac{x-y}{x+y}+\frac{x+y}{x-y}\right).\left(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2019

\(b.=\frac{1\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{1\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=\frac{1c-1a+1a-1b+1b-1c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

\(=-\frac{2b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

29 tháng 10 2019

Sr nha

Kq mik nhầm

Ko phải -2b đâu mà = 0

29 tháng 10 2019

câu a) mẫu chung: \(x^3x^2\left(x-1\right)^2\)  hơi dài nên mk ko làm ^_^

b)

\(=\frac{xy\left(a-b\right)+\left(x-a\right)\left(y-a\right)b-\left(x-b\right)\left(y-b\right)a}{ab\left(a-b\right)}\)

\(=\frac{xya-xyb+bxy-abx-aby+a^2b-axy+axb+aby-ab^2}{ab\left(a-b\right)}\)

\(=\frac{ab\left(a-b\right)}{ab\left(a-b\right)}=1\)

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B

2 tháng 1 2017

2) 1/x - 1/y - 1/z = 1

=> (1/x - 1/y - 1/z)^2 = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2/xy - 2/xz + 2/yz = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(1/xy + 1/xz - 1/yz) = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(z+y-x/xyz) = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.0 = 1

<=> 1/x^2 + 1/y^2 + 1/z^2 = 1 (đpcm)

6 tháng 2 2017

1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)

\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm 

2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)

tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1

3) kiểm tra lại xem đề đã chuẩn chưa