K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

a, Đặt \(A=2^{2010}+2^{2009}+2^{2008}+...+2^1+2^0\)

\(\Rightarrow2A=2^{2011}+2^{2010}+2^{2009}+...+2^2+2^1\)

\(\Rightarrow2A-A=2^{2011}-2^0\)

\(\Rightarrow A=2^{2011}-1\)

b,\(7^{x+2}+2.7^{x-1}=345\)

\(7^{x-1}.\left(7^3+2\right)=345\)

\(\Rightarrow7^{x-1}.345=345\)

\(\Rightarrow7^{x-1}=345:345=1\)

\(\Rightarrow7^{x-1}=7^0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

26 tháng 10 2018

Thanks bạn nhen . Hi hi.

28 tháng 1 2019

\(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(S=2^{2010}-\left(2^{2009}+2^{2008}+...+2+1\right)\)

Đặt \(A=1+2+...+2^{2008}+2^{2009}\)

\(\Rightarrow2A=2+2^2+..+2^{2010}\)

\(\Rightarrow A=2^{2010}-1\)

\(\Rightarrow S=2^{2010}-\left(2^{2010}-1\right)\)

\(\Rightarrow S=1\)

28 tháng 1 2019

S = 22010 - 22009 - 22008 - ... - 2 - 1

S= 22010 - ( 22009 + 22008 + ... + 2 + 1 )

Đặt A = 22009 + 22008 + .... + 2 + 1 

     2A = 2 . ( 22009 + 22008 + .... + 2 + 1

     2A = 22010 + 22009 + .... + 22 + 2

     2A - A = 22010 + 22009 + ...... + 22 + 2 - 22009 - 22008 - .... - 2 - 1 

  A        =  22010 - 1

Thay A vào S ta có :

S = 22010 - ( 22010 - 1 )

 S = 22010 - 22010 + 1

 S = 0 + 1 

S = 1

Vậy S = 1

28 tháng 8 2018

\(a,\frac{x+5}{2010}+\frac{x+6}{2009}+\frac{x+7}{2008}=-3\)

\(\Rightarrow\left(\frac{x+5}{2010}+1\right)+\left(\frac{x+6}{2009}+1\right)+\left(\frac{x+7}{2008}+1\right)=0\)

\(\Rightarrow\frac{x+2016}{2010}+\frac{x+2016}{2009}+\frac{x+2006}{2008}=0\)

chỉ bt lm v thoi "(

28 tháng 8 2018

a)   \(\frac{x+5}{2010}+\frac{x+6}{2009}+\frac{x+7}{2008}=-3\)

<=>   \(\frac{x+5}{2010}+1+\frac{x+6}{2009}+1+\frac{x+7}{2008}+1=0\)

<=>  \(\frac{x+2015}{2010}+\frac{x+2015}{2009}+\frac{x+2015}{2008}=0\)

<=>  \(\left(x+2015\right)\left(\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)

<=> \(x+2015=0\)    (do  1/2010 + 1/2009 + 1/2008 # 0 )

<=>   \(x=-2015\)

Vậy...

b)  mạo phép chỉnh đề

   \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+344}{5}=0\)

<=>  \(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+344}{5}-3=0\)

<=>  \(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{5}=0\)

làm tương tự a

29 tháng 9 2016

a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)

=> -2 < x < 1

Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu) 

29 tháng 9 2016

a) a=  2 và 1

b)    =      7

c=     5600 và 7899

d  5 và 6 

28 tháng 10 2018

\(S=2^{2010}-2^{2009}-2^{2008}-...-2-1\)

\(\Rightarrow2S=2.\left(2^{2010}-2^{2009}-2^{2008}-...-2-1\right)\)

\(\Rightarrow2S=2^{2011}-2^{2010}-2^{2009}-...-2^2-2\)

\(2S-S=\left(2^{2011}-2^{2010}-2^{2009}-...-2^2-2\right)-\left(2^{2010}-2^{2009}-2^{2008}-...-2-1\right)\)

\(S=2^{2011}-2^{2010}-2^{2009}-...-2^2-2-2^{2010}+2^{2009}+2^{2008}+...+2+1\)

\(S=2^{2011}+1\)

8 tháng 11 2018

dễ quá lớp tớ làm rồi


Bài 1 

\(=-\frac{21}{60}=-\frac{7}{20}\)

\(b,\left(2-\frac{1}{3}\right)^2+|-\frac{5}{6}|+\frac{-7}{12}-\frac{25}{9}\)

\(=\frac{25}{9}+\frac{5}{6}-\frac{7}{12}-\frac{25}{9}\)

\(=\left(\frac{25}{9}-\frac{25}{9}\right)+\left(\frac{5}{6}-\frac{7}{12}\right)\)

\(=0+\frac{1}{4}=\frac{1}{4}\)

Bài 2

\(a,x+\frac{2}{5}=-\frac{3}{10}\)

\(x=-\frac{3}{10}-\frac{2}{5}\)

\(x=-\frac{3}{10}-\frac{4}{10}\)

\(x=-\frac{7}{10}\)

\(b,|\frac{2}{3}+x|=\frac{5}{7}\)

\(\Rightarrow\orbr{\begin{cases}\frac{2}{3}+x=\frac{5}{7}\\\frac{2}{3}+x=-\frac{5}{7}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{7}-\frac{2}{3}\\x=-\frac{5}{7}-\frac{2}{3}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{21}\\x=-\frac{29}{21}\end{cases}}}\)

==  chắc trog quá trình lm lỡ xóa đó 

\(a,-\frac{3}{4}.\frac{7}{15}\)

\(=-\frac{21}{60}=-\frac{7}{20}\)

với lại bài trên mk tính nhẩm ko bấm máy sai == sửa giúp 

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)