K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

\(p=\frac{1}{3}x^2y+xy^2-xy+\frac{1}{2}xy^2-5xy-\frac{1}{3}x^2y\)

\(p=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)-\left(xy-5xy\right)\)

\(p=\frac{3}{2}xy^2-6xy\)

thay x = 0,5 và y = 1 vào P

\(\Rightarrow\)\(=\frac{3}{2}.0,5.1^2-6.0,5.1\)

\(=\frac{3}{2}.0,5-6.0,5\)

\(=\left(\frac{3}{2}-6\right).0,5\)

\(=\frac{-9}{2}.0,5\)

\(=\frac{-9}{4}\)

~hok tốt ~

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)

\(\Rightarrow\hept{\begin{cases}\frac{x^2}{2^2}=4\Rightarrow x^2=16=\left(\pm4\right)^2\\\frac{y^2}{3^2}=4\Rightarrow y^2=36=\left(\pm6\right)\end{cases}}\)

Còn lại bạn tự làm

6 tháng 9 2019

Gọi \(\frac{x}{2}=\frac{y}{3}=\frac{z}{-5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=-5k\end{cases}}\left(1\right)\)

Thay (1) vào biểu thức \(x^2+y^2=52\)ta  được :

\(\left(2k\right)^2+\left(3k\right)^2=52\)

\(\Leftrightarrow4k^2+9k^2=52\)

\(\Leftrightarrow13k^2=52\)

\(\Leftrightarrow k^2=4\)

\(\Leftrightarrow k=\pm2\)

Thay từng TH vào làm nốt đi

20 tháng 2 2018

1)P=5x^2-3xy+7y^2+6x^2-8xy+9y^2

P=(5x^2+6x^2)+(-3xy-8xy)+(7y^2+9y^2)

P=11x^2-11xy+16y^2

Q=5x2 – 3xy + 7y2 -6x^2+8xy-9y^2

Q=(5x^2-6x^2)+(-3xy+8xy)+(7y^2-9y^2)

Q=-1x^2+5xy-2y^2

2)M=11x^2-11xy+16y^2+x^2-5xy+2y^2

M=(11x^2+x^2)+(-11xy-5xy)+(16y^2+2y^2)

M=12x^2-16xy+18y^2

thay x=-1 và y=-2 vàoM

ta có :M=12*-1^2-16*-1*-2+18*-2^2

M=12*1-16*2+18*4

M=12-32+72

M=52

3)T=12x^2-16xy+18y^2-3x^2+16xy+14y^2

T=(12x^2-3x^2)+(-16xy+16xy)+(18y^2+14y^2)

T=9x^2+32y^2

nếu :th1:x<0=>x^2>0 hoặc =0

            y<0=>y^2>0 hoặc =0

\(=>\)T>0 hoặc =0

th2:x>0 hoặc =0=>x^2>0 hoặc =0

     y>0 hoặc =0=>y^2>0 hoặc =0

\(=>\)T>0 hoặc =0

Vậy trong mọi trường hợp đa thức T luôn nhận giá trị không âm khi  x và y thuộc tập hợp Z

20 tháng 2 2018

thích thì lên google mà hỏi

a=5/9

b=4/9

27 tháng 11 2017

nhấm bạn ơi

16 tháng 5 2019

\(\text{Ta có}:\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{2y}{3}\)

Thay \(x=\frac{2y}{3}\)vào biểu thức \(\frac{3x^2-4xy}{xy}\) 

Ta có :                                       \(=\frac{3\cdot\left(\frac{2y}{3}\right)^2-4\cdot\frac{2y}{3}\cdot y}{\frac{2y}{3}\cdot y}\)

                                                   \(=\frac{3\cdot\frac{4y^2}{9}-\frac{8y^2}{3}}{\frac{2y^2}{3}}\)

                                                     \(=\frac{\frac{4y^2}{3}-\frac{8y^2}{3}}{\frac{2y^2}{3}}=\frac{-\frac{4y^2}{3}}{\frac{2y^2}{3}}=-2\)

Vậy GTBT = -2 tại \(\frac{x}{y}=\frac{2}{3}\)

16 tháng 5 2019

@Šηιρєя︻┳デ═— sao phải phức tạp hóa vấn đề thế nhỉ

\(\frac{3x^2-4xy}{xy}\)

\(=\frac{3x^2}{xy}-\frac{4xy}{xy}\)

\(=\frac{3x}{y}-4\)

\(=\frac{3\cdot2}{3}-4\)

\(=2-4\)

\(=-2\)

5 tháng 1 2018

ngu hay hỏi!!!!!!!!!!!!!!!!!!@@@

5 tháng 1 2018
sửu thị độ
23 tháng 6 2020

Haiz, dễ thế mà!

Q(x)=x4-2x2+3x+1+2x2

Q(x)=x4+(2x2-2x2)+3x+1

Q(x)=x4+3x+1

23 tháng 6 2020

Q(x) = x4-2x2+3x+1+2x2

 Q(x) =x4+(2x2-2x2)+3x+1

 Q(x)=x4+3x+1

Chúc bạn học tốt!!! 

12 tháng 8 2018

\(\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{2y}{3}\)

Thế vào A ta được: \(A=\frac{2014x+2013y}{2014x-2013y}=\frac{2014.\frac{2y}{3}+2013y}{2014.\frac{2y}{3}-2013y}=\frac{y\left(2014.\frac{2}{3}+2013\right)}{y\left(2014.\frac{2}{3}-2013\right)}\)

                             \(A=\frac{\frac{10067}{3}}{\left(-\frac{2011}{3}\right)}=\frac{-10067}{2011}\)

P/s: Không chắc lắm