Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(N=\dfrac{2}{5}x^2y+xy^2-3xy+\dfrac{1}{3}xy^2-3xy-\dfrac{1}{2}x^2y\)
\(=\left(\dfrac{2}{5}x^2y-\dfrac{1}{2}x^2y\right)+\left(xy^2+\dfrac{1}{3}xy^2\right)+\left(-3xy-3xy\right)\)
\(=-\dfrac{1}{10}x^2y+\dfrac{4}{3}xy^2-6xy\)
\(=-\dfrac{1}{10}.\left(0,5\right)^2.\left(-1\right)+\dfrac{4}{3}.0,5.\left(-1\right)^2-6.0,5.\left(-1\right)\)
\(=\dfrac{1}{40}+\dfrac{2}{3}+3=\dfrac{443}{120}\)
trong mat phang oxy cho tam giac ABC có C 9-2;-5/3),cos BC=4/5,Mthuoc BC,ME vuong goc AB,MF vuong goc AC,I(7/3;1/3) la trung diem AM.tim toa do A biet ym<0
P=1/2
Mình mói lớp 5 thôi nên mình trả lời theo cach của mình.Bạn thông cảm.
P=(1/3x^2y -1/3x^2y)+(xy^2+1/2xy^2)-(xy+5xy)
P=0+3/2xy^2+6xy
P=3/2xy^2+6xy
\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)
Bậc:3
Thay x=-1, y=1 vào B ta có:
\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)
1.
a)\(\left(\dfrac{1}{2}\cdot\left(-2\right)\cdot\dfrac{-1}{3}\right)\cdot\left(x^2\cdot x^2\cdot x^2\right)\cdot\left(y^2\cdot y^3\right)\cdot z\)
\(\dfrac{1}{3}x^6y^5z\)
Deg=12
a) \(x^2y^2-x^2+\left(\dfrac{1}{2}\right)^6x=x^2y^2-x^2+\dfrac{1}{64}x\)
\(\Rightarrow\) đa thức bậc 4
b) \(\left(-9x^2\right)\dfrac{1}{3}y+y\left(-x^2\right)+24x\left(\dfrac{-1}{4}xy\right)\)
\(=-3x^2y-x^2y-6x^2y\)
\(=-10x^2y\)
Thay \(x=1;y=-1\) vào đa thức ta có:
\(-10x^2y=-10.1^2.\left(-1\right)=10\)
đầu tiên ta thu gọn trước để tính cho dễ:
Ta có:
\(P=\frac{1}{3}x^2y+xy^2-xy+\frac{1}{2}xy^2-5xy-\frac{1}{3}x^2y\)
\(P=\left(\frac{1}{3}x^2y-\frac{1}{3}x^2y\right)+\left(xy^2+\frac{1}{2}xy^2\right)+\left(-xy-5xy\right)\)
\(P=\frac{3}{2}xy^2-6xy\)
rồi thay x = 0,5 và y = 1 vào
ta đc:
\(P=\frac{3}{2}\cdot\left(0,5\right)\cdot1^2-6\cdot\left(0,5\right)\cdot1=0,75-3=-2,25\)
= \(\left(\dfrac{-1}{2}xy^2z-\dfrac{2}{3}xy^2z+xy^2z\right)+\left(3x^2y^2-\dfrac{1}{3}x^2y^2\right)+2xy^2\)
= \(\dfrac{-1}{6}xy^2z+\dfrac{8}{3}x^2y^2+2xy^2\)
Thay x = -2, y = 1, z = 3 vào biểu thức, có:
\(\dfrac{-1}{6}.\left(-2\right).1^2.3+\dfrac{8}{3}.\left(-2\right)^2.1^2+2\left(-2\right).1^2\)
= 1 + \(\dfrac{32}{3}\) - 4
= \(\dfrac{23}{3}\)
Vậy GTBT trên là \(\dfrac{23}{3}\)tại x = -2, y = 1, z = 3
Thu gọn rồi tính giá trị của đa thức P tại x = 0,5 và y = 1.
Ta có: P = 1313 x2 y + xy2 – xy + 1212 xy2 – 5xy – 1313 x2y
P = 1313 x2 y – 1313 x2y + 1212 xy2 + xy2 – xy – 5xy = 3232 xy2 – 6xy
Thay x = 0,5 và y = 1 ta được
P = 3232 . 0,5 . 12 – 6. 0,5 . 1 = 3434 - 3 = −94−94.
Vậy P = −94−94 tại x = 0,5 và y = 1.