Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình:
Xét tam giác ABC có : M là trung điểm của AB
MN song song với BC
=> MN là đường trung bình của tam giác ABC
=> Nlà trung điểm của AC
a: Xét ΔBAC có BN/BA=BM/BC
nên NM//AC và NM=AC/2
=>NM//AP và NM=AP
=>ANMP là hình bình hành
mà góc NAP=90 độ
nên ANMP là hình chữ nhật
b: Xét tứ giác CMNP có
NM//CP
NM=CP
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
=>E là trung điểm của NC
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
A B C M N I K ( Hình vẽ chỉ mang tính chất minh họa )
Áp dụng định lý Talet ta có :
+) \(MI//BK\Rightarrow\frac{AM}{AB}=\frac{MI}{BK}=\frac{AI}{AK}\) (1)
+) \(NI//CK\Rightarrow\frac{AN}{AC}=\frac{NI}{CK}=\frac{AI}{AK}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{MI}{BK}=\frac{NI}{CK}\) (3)
Mà : I là trung điểm của MN \(\Rightarrow MI=NI=\frac{MN}{2}\) (4)
Nên từ (3) và (4) \(\Rightarrow BK=CK\)
\(\Rightarrow\) K à trung điểm của BC (đpcm)
a: Xét tứ giác MNPB có
MN//BP
MB//NP
Do đó: MNPB là hình bình hành
a: Xét tứ giác MNPB có
MN//PB
MB//NP
Do đó: MNPB là hình bình hành
Xét ΔABC có
M là trung điểm của AB
MN//BC
Do đó: N là trung điểm của AC