Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MN ⊥ AB
=> góc MNA = 900
MP ⊥ AC
=> góc MPA = 900
Xét tứ giác ANMP có:
góc MNA = góc MPA = góc NAP = 900
=> tứ giác ANMP là hình vuông
a: Xét tứ giác ANMP có
\(\widehat{ANM}=\widehat{APM}=\widehat{NAP}=90^0\)
=>ANMP là hình chữ nhật
b: Xét ΔABC có
M là trung điểm của BC
MN//AC(cùng vuông góc với AB)
Do đó: N là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MP//AB(cùng vuông góc với AC)
Do đó: P là trung điểm của AC
=>\(AP=PC=\dfrac{AC}{2}\)
mà MN=AP(ANMP là hình chữ nhật)
nên MN=AP=PC
Xét tứ giác CMNP có
CP//MN
CP=MN
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
mà E là trung điểm của MP
nên E là trung điểm của CN
c: Xét ΔPMA và ΔPGC có
\(\widehat{PCG}=\widehat{PAM}\)(hai góc so le trong, CG//AM)
PA=PC
\(\widehat{CPG}=\widehat{APM}\)(hai góc đối đỉnh)
Do đó: ΔPMA=ΔPGC
=>PG=PM
=>P là trung điểm của MG
Xét tứ giác AMCG có
P là trung điểm chung của AC và MG
=>AMCG là hình bình hành
Hình bình hành AMCG có AC\(\perp\)MG
nên AMCG là hình thoi
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
Kéo dài MN cắt AB tại D => CA; MD là đường cao tg CBD => K là trực tâm=> BK _|_CD (1*)
Mà AH//MD \(\Rightarrow\) \(\frac{BA}{BD}=\frac{BH}{BM}\Rightarrow\frac{2BN}{BD}=\frac{BH}{BM}\Rightarrow\frac{BN}{BD}=\frac{BH}{2BM}=\frac{BH}{BC}\Rightarrow\)NH//CD (2*)
Từ (1*,2*) => BK _|_HN\(\Rightarrowđcpm\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a: Xét ΔBAC có BN/BA=BM/BC
nên NM//AC và NM=AC/2
=>NM//AP và NM=AP
=>ANMP là hình bình hành
mà góc NAP=90 độ
nên ANMP là hình chữ nhật
b: Xét tứ giác CMNP có
NM//CP
NM=CP
Do đó: CMNP là hình bình hành
=>CN cắt MP tại trung điểm của mỗi đường
=>E là trung điểm của NC