Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AMC và tam giác DMB có:
góc AMC= góc BMD(đối đỉnh)
AM=DM(gt)
BM=CM(gt)
suy ra tam giác AMC=tam giác BMD(c-g-c)
hình bạn vẽ jum mik nha! Còn giờ mik giải bài
a) Xét \(\Delta\)vuông ABH và \(\Delta\)vuông AEH có:
AH: cạnh chung
góc BAH= góc EAH (do AH là đường phân giác của tam giác ABC)
Do đó: \(\Delta\)ABH=\(\Delta\)AEH (cgv-gn)
b) Vì \(\Delta\)ABH= \(\Delta\)AEH (cmt)
=> AB=AE (2 cạnh tương ứng)
Xét \(\Delta\)ABM và\(\Delta\)AEM có:
AB= AE (cmt)
góc BAM= góc EAM ( do AM là đường phân giác của tam giác ABC)
AM: cạnh chung
Do đó: \(\Delta\)ABM=\(\Delta\)AEM ( c.g.c)
=> góc ABM= góc AEM=90 độ
=> ME vuông góc với AC
c) Vì \(\Delta\)ABM= \(\Delta\)AEM (cmt)
=> BM=EM=3 cm
Ta có: \(\Delta\)MEC vuông tại E
Theo định lí Py-ta-go , ta có:
MC\(^2\)= ME\(^2\)+EC\(^2\)
EC\(^2\)= MC\(^2\)- ME\(^2\)
EC\(^2\)= 5\(^2\)- 3\(^2\)=25-9=16
EC = \(\sqrt{16}\)=4 cm
d) Ta có : tam giác ABC vuông tại B
=> góc C+ góc BAC = 90 độ
30 độ + góc BAC = 90 độ
góc BAC= 90 độ -30 độ = 60 độ
Xét tam giác ABE có AB=AE và góc BAC = 60 độ
=> tam giác ABE đều
=> góc BAE= góc ABE= góc AEB= 60 độ
Ta có: góc BAE+ góc EBC= 90 độ
góc BAE + góc C =90 độ
=> góc EBC = góc C
=> tam giác BEC cân tại E
Bài này lm từ đơt đầu năm mà quên mất tiêu r
+) Trên tia đổi của AB lấy AH sao cho AH = AB = \(\frac{1}{2}\) BC
+) Xét Δ AHC vuông tại A và Δ ABC vuông tại A có
AH = AB ( cách vẽ )
AC: cạnh chung
⇒ ΔAHC = Δ ABC ( c-g-c)
⇒ HC = BC ( 2 cạnh tương ứng )
Ta có H thuocj tia đối của tia AB
=> HA + AB = HB (1)
Mà AH = AB = \(\frac{1}{2}\) BC ( cách vẽ )
=> 2 AH = 2 AB = BC (2)
=> 2AH = 2 HB = AB = BC
+) Xét ΔABH có \(\hept{\begin{cases}HB=BC\\HC=BC\end{cases}}\)
=> ΔABH đều
=> \(\widehat{B}=60^o\) ( tính chất tam giác đều )