K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2020

Bài này lm từ đơt đầu năm mà quên mất tiêu r

+) Trên tia đổi của AB lấy AH sao cho AH = AB = \(\frac{1}{2}\) BC

+) Xét Δ AHC vuông tại A và Δ ABC vuông tại A có

AH = AB ( cách vẽ )

AC: cạnh chung

⇒ ΔAHC = Δ ABC ( c-g-c)

⇒ HC = BC  ( 2 cạnh tương ứng )

Ta có H thuocj tia đối của tia AB 

=> HA + AB  = HB  (1)

Mà AH = AB = \(\frac{1}{2}\) BC ( cách vẽ )

=> 2 AH = 2 AB = BC   (2)

=> 2AH = 2 HB = AB  =  BC

+) Xét ΔABH có \(\hept{\begin{cases}HB=BC\\HC=BC\end{cases}}\)

=> ΔABH đều

=> \(\widehat{B}=60^o\)  ( tính chất tam giác đều )

\(\widehat{CAI}=90^0-\widehat{BAI}\)

\(\widehat{ACI}=\dfrac{\widehat{ACH}}{2}\)

Do đó: \(\widehat{CAI}+\widehat{ACI}=90^0+\dfrac{\widehat{BAH}}{2}-\widehat{BAI}=90^0\)

hay \(\widehat{AIC}=90^0\)

30 tháng 9 2016

A B C H I k

Kí hiệu như trên hình.

Ta có góc IAH + góc AKH = 90 độ

Góc KAB + góc CAK = 90 độ. Mà góc HAI = góc KAB

=> Góc CAK = góc CKA => Tam giác CAK cân tại I

Mà CI là đường phân giác => CI vuông góc AK => góc AIC = 90 độ

 

28 tháng 8 2018

a) Ta có : BK=AB (gt)

⇒ ΔABK cân tại B

\(\widehat{B}=60^o\) (gt)

⇒ ΔABK đều

⇒ AK=AB

vậy AK=AB

b) đậu bài hình như sai

1Đặt:\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)Chứng minh rằng \(\frac{A}{B}\) là số nguyên.2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=03Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)5CHo tam giác ABC với \(\widehat{B}\)<900...
Đọc tiếp

1Đặt:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)

Chứng minh rằng \(\frac{A}{B}\) là số nguyên.

2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=0

3Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a

4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)

5CHo tam giác ABC với \(\widehat{B}\)<900 và \(\widehat{B}=2\widehat{C}\).Kẻ AH vuông góc với BC(H\(\in\)BC).Trên tia đối của tia BA LẤY ĐIỂM e SAO CHO BE=BH.Đường thẳng HE cắt AC tại D.

a)Chứng minh:\(\widehat{E}=\frac{1}{2}\widehat{ABC}\)

b)Chứng minh DA=DH=DC

c)Lấy điểm B*sao cho H là trung điểm của BB*.Chứng minh rằng:tam giác AB*C cân.

d)Chứng minh:AE=HC.

6Cho tam giác ABC(AB=AC) với góc ACB=80 độ.Trong tam giác ABC có điểm M sao cho góc MAB =10 độ và góc MBA=30 độ.Tính góc BMC

 

2
23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)

23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)