Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác ABM và tam giác ECM
MA=ME(gt)
góc AMB=góc EMC(đđ)
MB=MC(do AM là đường trung tuyến)
\(\Rightarrow\)tam giác ABM= tam giác ECM(c.g.c)
b)Vì tam giác ABM= tam giác ECM(c.g.c)
\(\Rightarrow\)CE=AB(cặp cạnh tương ứng)
Vì AB<AC(cạnh góc vuông nhỏ hơn cạnh huyền)
Mà AB=CE
\(\Rightarrow\)CE<AC
c)Vì tam giác ABM= tam giác ECM(c.g.c)
\(\Rightarrow\)BAM=MEC(cặp góc tương ứng)
Vì CE<AC\(\Rightarrow\)MEC<MAC
Mà MEC=BAM
\(\Rightarrow\)BAM<MAC(vô lí)
d)Xét tam giác AMC và tam giác EMB
MA=ME(gt)
góc AMB=góc EMC(đđ)
MB=MC(do AM là đường trung tuyến)
\(\Rightarrow\)tam giác AMC= tam giác EMB(c.g.c)
\(\Rightarrow\)ACB=EBM(cặp góc tương ứng)
\(\Rightarrow\)BE//AC vì ACB=EBM(so le trong)
e)Minh ko hiểu bạn ghi gì cả
Bạn xem lại câu c nha
Làm mất nhiều thời gian quá!
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: AH<AD
=>H nằm giữa B và D
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
=>EA=ED
mà BA=BD
nên BE là trung trực của AD
c: góc CAD+góc BAD=90 độ
góc HAD+góc BDA=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>AD là phân giác của góc HAC
A B C D E I F Từ D vẽ đường thẳng song song với AC cắt BC tại F
Ta có: \(\bigtriangleup\)ABC cân tại A \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}\) (1)
DF//AC \(\Rightarrow\) DF//EC \(\Rightarrow\) \(\begin{cases} \widehat{ACB}=\widehat{DFB}(2)\\ \widehat{FDI}=\widehat{IEC}(3) \end{cases}\)
Từ (1);(2) \(\Rightarrow\) \(\widehat{ABC}=\widehat{DFB}\)
\(\Rightarrow\) \(\bigtriangleup\)DFB cân tại D
\(\Rightarrow\) BD=DF.
Mà BD=CE(gt) \(\Rightarrow\) CE=DF.
Xét \(\bigtriangleup\)FDI và \(\bigtriangleup\)CEI có:
DF=CE(cmt)
\(\widehat{FDI}=\widehat{IEC}\) (cmt)
DI=IE(I là trung điểm DE)
\(\Rightarrow\) \(\bigtriangleup\)FDI = \(\bigtriangleup\)CEI (c-g-c)
\(\Rightarrow\) \(\widehat{FID}=\widehat{EIC}\)
Ta có: \(\widehat{DIC}+\widehat{CIE}\) = 180o
Mà \(\widehat{FID}=\widehat{EIC}\) (cmt)
\(\Rightarrow\) \(\widehat{DIC}+\widehat{DIF}\) = 180o
\(\Rightarrow\) \(\widehat{FIC}=180^{0}\)
Hay \(\widehat{BIC}=180^{0}\)
\(\Rightarrow\) 3 điểm B,I,C thẳng hàng (đpcm)
Kẻ DH song song với AC (H thuộc BC)
Xét tam giác DBH. Ta có Góc BDH = góc BAC. B là góc chung => góc DHB = góc ACB. góc B = ACB (Tam giác ABC cân) => tam giác BDH cân lại D => DB = DH.
Xét 2 tam giác DHI và tam giác ECI
Ta có:
Góc HDI = góc IEC ( vị trí so le trong của DH và AC)
DH = CE ( cùng bằng DB)
DI = IE (gt)
=> 2 tam giác bằng nhau c.g.c
=> Góc DIB = Góc EIC
mà 2 góc này ở vị trí đối đỉnh => Thằng hàng.
(hoặc góc EIC + CID = 180 => DIB + CID = 180 độ => BIC là góc bẹt )
Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành
\(\Rightarrow\begin{cases}AB=CE\left(1\right)\\AB\backslash\backslash CE\end{cases}\)
a,xét ΔABM và ΔECM có:
\(\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}\)
→ΔABM=ΔECM(c.c.c)
b,Xét ΔABD có BH là đường cao đồng thời là đường trung tuyến
nên ΔABD cân tại B
→BC là phân giác của \(\widehat{ABD}\)
ΔABD cân tại B →AB=BD(2)
Từ (1),(2)→BD=CE