K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

DAB+BAC=EAC+CAB

=>DAC=BAE

XÉT ABE VÀ ADC

ta có DA=AB

AE=AC

DAC=BAE

=>=nhau

nên ABE=ADC=>BIA=IAD=60

BIC=120

26 tháng 1 2016

Nếu bạn đọc bài mình thì nhớ phải tick nha!!

a, góc DAC=góc BAE( cùng bằng 60°+góc BAC)

Xét ∆DAC và ∆BAE

AD=AB

DAC=BAE

AC=AE

=>∆DAC=∆BAE

DC=BE

b,   Theo câu a, ∆DAC=∆ BAE

=> góc ADC=góc ABE

Mà góc ADC+Góc CDB =góc ADB=60°

=>góc ABE+góc ADC=60°

ABE+ADC+DBA=120°( cộng thêm góc ABD=60° nhá!!)

=> DBE+BDC= 120°

Hay IDB+DBI=120°

Mà IDB+DBI+BID=180°

=>.       120°+BID=180°

=> BID=60°

Vậy...

 

27 tháng 3 2019

Xét \(\Delta DAC\)và \(\Delta BAE\) có:\(DA=BA;\widehat{DAC}=\widehat{EAB}\left(=60^0+\widehat{BAC}\right);AC=AE\Rightarrow\Delta DAC=\Delta BAE\left(c.g.c\right)\Rightarrow\widehat{DCA}=\widehat{AEB}\)

Ta có:

\(\widehat{BIC}=\widehat{IEC}+\widehat{ECI}=\widehat{IEC}+\left(\widehat{ICA}+\widehat{ACE}\right)=\left(\widehat{IEC}+\widehat{AEI}\right)+\widehat{ACE}=\widehat{AEC}+\widehat{ACE}=60^0+60^0=120^0\)(Vì \(\widehat{AEB}=\widehat{ACI}\))

\(\Rightarrow\widehat{KIB}=60^0\Rightarrow\Delta KIB\)là tam giác đều \(\Rightarrow\widehat{KBI}=\widehat{BKI}=\widehat{BIK}=60^0;KB=IB\).

Ta có:\(\widehat{KBD}=\widehat{ABD}-\widehat{ABK}=60^0-\widehat{ABK}=\widehat{KBI}-\widehat{KBA}=\widehat{ABI}\)

Xét \(\Delta DKB\) và \(\Delta AIB\) có: \(DB=AB;\widehat{DBK}=\widehat{ABI}\left(cmt\right);KB=IB\Rightarrow\Delta DKB=\Delta AIB\left(c.g.c\right)\)

\(\Rightarrow\widehat{BIA}=\widehat{DKB}=180^0-60^0=120^0\)

\(\Rightarrow\widehat{AIE}=\widehat{AID}=120^0-60^0=60^0\) hay IA là phân giác \(\widehat{DIE}\).

26 tháng 3 2019

Sai đề rồi bạn.D,E phải nằm ở nửa mặt phẳng nào chứ???

26 tháng 1 2016

xét tam giác abe va adc

để chứng minh BE =DC

bạn ấn vào đúng 0 sẽ ra đáp án mình giải 

mình làm bài này rồi

24 tháng 3 2020

a) (Nếu cj biết vẽ hình rồi thì thôi nha chị, còn nếu chị chưa vẽ được hình thì chị có thể nhắn tin với em ạ )

Ta có : tam giác ABE và tam giác ADC có : 

AB = AD

AC=AE

góc DAC  = góc BAE  ( cũng = góc BAC t60 độ ) 

=> tam giác ABE  = tam giác ADC ( c . g . c ) 

=> góc AEB  = góc ACD ( 2 góc tương ứng) ; BE = CD

Gọi F là tia đối tia BI sao cho DI=IF

=> tam giác DIF đều do góc DIB = 60 độ

Xét tam giác DBF  và tam giác DAI có : 

DF = DI , DB = DA  , góc FDB = góc IDA = 60 độ - góc BDI 

Vậy ta có : ID = IF = IB + FB = IB + IA ( đpcm )

b) Ta có : AM2 = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)

Áp dụng định lí cosin trong tam giác ABM ta có : 

AM2 =BA2 + BM2 -2.BA . BM .cos B

       = AB2 + BM2 -2.AB . BM . \(\frac{AB^2+BC^2-AC^2}{2.AB.BC}\)

        = AB2 + \(\frac{BC^2}{4}-2.BM.\frac{AB^2+BC^2-AC^2}{2.2.BM}\)

       = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)

<=> AB2 + AC2 =2.AM2 + \(\frac{BC^2}{2}\)