Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DAB+BAC=EAC+CAB
=>DAC=BAE
XÉT ABE VÀ ADC
ta có DA=AB
AE=AC
DAC=BAE
=>=nhau
nên ABE=ADC=>BIA=IAD=60
BIC=120
Nếu bạn đọc bài mình thì nhớ phải tick nha!!
a, góc DAC=góc BAE( cùng bằng 60°+góc BAC)
Xét ∆DAC và ∆BAE
AD=AB
DAC=BAE
AC=AE
=>∆DAC=∆BAE
DC=BE
b, Theo câu a, ∆DAC=∆ BAE
=> góc ADC=góc ABE
Mà góc ADC+Góc CDB =góc ADB=60°
=>góc ABE+góc ADC=60°
ABE+ADC+DBA=120°( cộng thêm góc ABD=60° nhá!!)
=> DBE+BDC= 120°
Hay IDB+DBI=120°
Mà IDB+DBI+BID=180°
=>. 120°+BID=180°
=> BID=60°
Vậy...
a, Chứng minh tam giác ADB=tam giác ADC
=>góc BAD=góc CAD=>AD là tia phân giác của góc BAC=>góc BAD=góc CAD=10độ
b, Do tam giác ABC cân tại A và tam giác DCB đều nên góc ABC=(180độ-20độ):2= 80độ;góc DBC= 60độ
=> góc ABD=80 độ - 60 độ=20độ
Tia BM là tia phân giác của góc ABD=> góc ABM=góc DBM=10độ
Chứng minh được tam giác ABM = tam giác BAD(g.c.g) => AM=BD mà BD =BC nên AM=BC (đpcm)
Xét \(\Delta DAC\)và \(\Delta BAE\) có:\(DA=BA;\widehat{DAC}=\widehat{EAB}\left(=60^0+\widehat{BAC}\right);AC=AE\Rightarrow\Delta DAC=\Delta BAE\left(c.g.c\right)\Rightarrow\widehat{DCA}=\widehat{AEB}\)
Ta có:
\(\widehat{BIC}=\widehat{IEC}+\widehat{ECI}=\widehat{IEC}+\left(\widehat{ICA}+\widehat{ACE}\right)=\left(\widehat{IEC}+\widehat{AEI}\right)+\widehat{ACE}=\widehat{AEC}+\widehat{ACE}=60^0+60^0=120^0\)(Vì \(\widehat{AEB}=\widehat{ACI}\))
\(\Rightarrow\widehat{KIB}=60^0\Rightarrow\Delta KIB\)là tam giác đều \(\Rightarrow\widehat{KBI}=\widehat{BKI}=\widehat{BIK}=60^0;KB=IB\).
Ta có:\(\widehat{KBD}=\widehat{ABD}-\widehat{ABK}=60^0-\widehat{ABK}=\widehat{KBI}-\widehat{KBA}=\widehat{ABI}\)
Xét \(\Delta DKB\) và \(\Delta AIB\) có: \(DB=AB;\widehat{DBK}=\widehat{ABI}\left(cmt\right);KB=IB\Rightarrow\Delta DKB=\Delta AIB\left(c.g.c\right)\)
\(\Rightarrow\widehat{BIA}=\widehat{DKB}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{AIE}=\widehat{AID}=120^0-60^0=60^0\) hay IA là phân giác \(\widehat{DIE}\).
Sai đề rồi bạn.D,E phải nằm ở nửa mặt phẳng nào chứ???