Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ AH vuông góc với BC,suy ra AH=32 cm và A,O,H thảng hàng.
Mà AH>CH >>>O nằm giữa A và H.Kẻ OM vuông góc với AC suy ra tam giác AMO đồng dạng với AHC>>>AM/AH=AO/AC
>>>20/32=(32-OH)/40>>>OH=7cm >>>khoảng cách là 7 cm
a. Ta có :\(AB^2+AC^2=BC^2\) nên ABC vuông tại A
nên tâm đường tròn ngoại tiếp ABC là trung điểm BC
b. khi đó R = BC/2 =13/2 cm
khoảng cách từ tâm đến AC là :
\(d=\sqrt{R^2-\frac{AC^2}{4}}=\frac{5}{2}cm\)
nếu rảnh có thể tham khảo tại
Trường Toán Pitago – Hướng dẫn Giải toán - Học toán lớp 3,4,5,6,7,8,9 - Học toán trên mạng - Học toán online
A B C H D O
Kẻ Đường kính AD sao cho A , O , D , H thẳng hàng .
HB = HC = BC : 2 = 24
Tam giác AHC vuông tại H , Theo py ta go tính AH
Tam giác ABD nội tiếp đường tròn tâm O đường kính AD
=> Tam giác ABD vuông tại B theo HTL tính AD
OA = AD : 2 = ....
OH = AH - OA