K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

a: \(\overrightarrow{AB}=\left(-3;4\right)\)

\(\overrightarrow{AC}=\left(8;6\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A 

c: Tọa độ trọng tâm G là:

\(\left\{{}\begin{matrix}x_G=\dfrac{1-2+9}{3}=\dfrac{8}{3}\\y_G=\dfrac{2+6+8}{3}=\dfrac{16}{3}\end{matrix}\right.\)

13 tháng 1 2022

hảo copy :V

 

Gọi trực tâm là H

\(\overrightarrow{BC}=\left(1;1\right)\)

\(\overrightarrow{AH}=\left(x-2;y-1\right)\)

Theo đề, ta có: (x-2)*1+1(y-1)=0

=>x+y-3=0

\(\overrightarrow{AC}=\left(-2;3\right)\)

\(\overrightarrow{BH}=\left(x+1;y-3\right)\)

Theo đề, ta có; -2(x+1)+3(y-3)=0

=>-2x-2+3y-9=0

=>-2x+3y=11

mà x+y=3

nên x=-2/5; y=17/5

Gọi (C): \(x^2+y^2-2ax-2by+c=0\) là phương trình đường tròn ngoại tiếp ΔABC

Theo đề, ta có hệ:

\(\left\{{}\begin{matrix}2^2+1^2-4a-2b+c=0\\1+9+2a-6b+c=0\\0^2+4^2+0a-8b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4a-2b+c=-5\\2a-6b+c=-10\\-8b+c=-16\end{matrix}\right.\)

=>a=7/10; b=23/10; c=12/5

=>x^2+y^2-7/5x-23/5x+12/5=0

=>x^2-2*x*7/10+49/100+y^2-2*x*23/10+529/100=169/50

=>(x-7/10)^2+(y-23/10)^2=169/50

=>R=13/5căn 2

 

1: \(\overrightarrow{AB}=\left(-10;-5\right)\)

\(\overrightarrow{AC}=\left(-6;3\right)\)

\(\overrightarrow{BC}=\left(4;8\right)\)

Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C

\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)

Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)

 

3 tháng 5 2017

a)

– Tọa độ trọng tâm G của tam giác ABC là:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

– Tọa độ trực tâm H của tam giác ABC:

Cách 1:

+ Phương trình đường cao BD:

BD ⊥ AC ⇒ Đường thẳng BD nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

BD đi qua B(2; 7)

⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0

+ Phương trình đường cao CE:

CE ⊥ AB ⇒ Đường thẳng CE nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

CE đi qua C(–3; –8)

⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.

Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi H(x, y) là trực tâm tam giác ABC

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

Khi đó TA = TB = TC = R.

+ TA = TB ⇒ AT2 = BT2

⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2

⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49

⇒ 4x – 8y = –28

⇒ x – 2y = –7 (1)

+ TB = TC ⇒ TB2 = TC2

⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2

⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64

⇒ 10x + 30y = –20

⇒ x + 3y = –2 (2)

Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ T, H, G thẳng hàng.

c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)

Bán kính đường tròn ngoại tiếp ΔABC:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình đường tròn ngoại tiếp tam giác ABC:

(x + 5)2 + (y – 1)2 = 85

30 tháng 3 2017

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10