Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m
b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\); \(x_1.x_2=m^2+3m-4\)
\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)
\(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)
A đặt giá trị nhỏ nhất khi m = -3/2
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
để phương trình có hai nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)\ge0\Leftrightarrow-m^2-6m-5\ge0\Leftrightarrow m\in\left[-5;-1\right]\)
b. để phương trình có hia nghiệm thì \(m\in\left[-5;-1\right]\) khi đó \(\hept{\begin{cases}x_1+x_2=-\frac{2\left(m+1\right)}{2}=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{cases}\Rightarrow M=-m-1-m^2-4m-3=-m^2-5m-4}\)
hay \(M=-\left(m+1\right)\left(m+4\right)=\left(-1-m\right)\left(m+4\right)\le\left(\frac{-1-m+m+4}{2}\right)^2=\frac{9}{4}\)
Dấu bằng xảy ra khi \(-1-m=m+4\Leftrightarrow m=-\frac{5}{2}\)
\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)=m^2-2m+1=\left(m-1\right)^2\)
Để pt có 2 nghiệm pb <=> delta >0 <=> m khác 1
Theo hệ thức vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=3m-1\\x_1.x_2=2m^2-m\end{cases}}\)
Vì |x1+x2|=2
\(\Rightarrow x_1^2+x_2^2-2x_1.x_2=4\Rightarrow\left(x_1+x_2\right)^2-4x_1.x_2=4\)
\(\Rightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\Rightarrow\left(m-1\right)^2=4\Rightarrow\orbr{\begin{cases}m=3\\m=-1\left(L\right)\end{cases}}\)
Vậy m=3 thì thỏa mãn
Theo vi-ét ta được: \(\hept{\begin{cases}x_1+x_2=\frac{3m-1}{1}=3m-1\\x_1x_2=\frac{2m^2-m}{1}=2m^2-m\end{cases}}\)(1)
Theo đề: \(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\Leftrightarrow x_1^2+x_2^2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)(2)
Thay (1) vào (2) ta được pt:
\(\left(3m-1\right)^2-4.\left(2m^2-m\right)=4\)
\(\Rightarrow9m^2-6m+1-8m^2+4m-4=0\)
\(\Rightarrow m^2-2m-3=0\)
\(\Rightarrow\left(m-3\right)\left(m+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\)
Với m = 3 suy ra hệ \(\hept{\begin{cases}x_1+x_2=8\\x_1x_2=15\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=5\\x_2=3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=3\\x_2=5\end{cases}}\)
Với m = -1 suy ra hệ \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=3\end{cases}}\). Giải hệ ta được \(\hept{\begin{cases}x_1=-1\\x_2=-3\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=-3\\x_2=-1\end{cases}}\)
Vậy (x1;x2) = (5;3) , (3;5) , (-1;-3) , (-3;-1)
a) Do x = -3 là 1 nghiệm của phương trình đã cho nên ta có :
(-3)^2 - ( 3m - 2 ) * (-3) + 2m^2 -m+1=0
<=> 9 + 9m - 6 + 2m^2 - m + 1 = 0
<=> 2m^2 + 8m + 4 = 0
<=> m^2 + 4m + 2 = 0
denta phẩy = 2^2 - 1*2 = 4 - 2 = 2 >0
=> m1 = ( -2 + căn 2 ) / 1 = -2 + căn 2
m2 = ( -2 - căn 2 ) / 1 = -2 - căn 2
Vậy với m = ........ ( kết luận)
b) x^2 - ( 30 - 2 ) + 2m^2 - m + 1 = 0
denta = ( 3m - 2)^2 - 4 * 1 * ( 2m^2 - m + 1) = 9m^2 -12m + 4 - 8m^2 + 4m - 4 = m^2 - 8m = m( m - 8 )
Phương trình có nghiệm khi denta > hoặc = 0
=> m( m - 8 ) > hoặc = 0
m > hoặc = 0 và m - 8 > hoặc = 0
<=> Hoặc m < hoặc = 0 và m - 8 < hoặc = 0 ( dừng dấu ngoặc vuông để ngoặc giữa 2 dòng này nhé)
m > hoặc = 0 và m > hoặc = 8
<=> hoặc m< hoặc = 0 và m < hoặc = 8 ( giống trên )
m > hoặc = 8
<=> hoặc m < hoặc = 0
Vậy với m> hoặc = 8 hoặc m < hoặc = 0 thì phương trình đã cho có nghiệm
Theo Vi-et ta có x1 + x2 = 3m - 2
và x1 * x2 = 2m^2 - m + 1
P =x1^2 + x2^2 - 5x1x2 = ( x1 + x2 ) - 2x1x2 -5x1x2 = (x1 + x2 ) - 7x1x2 = 3m - 2 - 7 * ( 2m^2 - m + 1) ( do x1 +x2 = 3m + 2 và x1x2= 2m^2 - m + 1)
= 3m - 2 -14m^2 + 7m - 7 = -14m^2 - 10m - 9
Mk làm được đến đây thôi ak
có gì thì k cho mk nhé vis cái này mỏi lắm đấy *****