Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
a/
Ta có: \(c.a=-m^2+m-2=-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}<\)\(0\) với mọi số thực m.
=> pt luôn có 2 nghiệm trái dấu
b/
Theo Viet: \(x_1+x_2=m-1;\text{ }x_1.x_2=-m^2+m-2\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(m-1\right)^2-2\left(-m^2+m-2\right)=3m^2-4m+5\)
\(=3\left(m^2-\frac{4}{3}m\right)+5=3\left(m^2-2.m.\frac{2}{3}+\frac{4}{9}\right)+5-3.\frac{4}{9}\)
\(=3\left(m-\frac{2}{3}\right)^2+\frac{11}{3}\ge\frac{11}{3}\)
Dấu "=" xảy ra khi m = 2/3.
Vậy GTNN của x2+y2 là 11/3.
c/\(x_1=2x_2\)
\(m-1=x_1+x_2=2x_2+x_2=3x_2\Rightarrow x_2=\frac{m-1}{3}\)
\(\Rightarrow x_1=2x_2=\frac{2}{3}\left(m-1\right)\)
\(x_1.x_2=-m^2+m-2\Rightarrow\frac{1}{3}\left(m-1\right).\frac{2}{3}\left(m-1\right)=-m^2+m-2\)
\(\Leftrightarrow2\left(m-1\right)^2=9\left[-\left(m-\frac{1}{2}\right)^2-\frac{7}{4}\right]\)
Pt trên vô nghiệm do \(VT\ge0>VP\)
Vậy không tồn tại m để......
Lưu ý câu c: ở trên là form làm bài dạng này chung, tuy nhiên, ở bài này ta thấy ngay không tồn tại m.
Do x1 và x2 trái dấu với mọi m
Nên x1 ≠ x2 với mọi m.
Cho phương trình x2 – mx + m2 -5 =0 (1) với m là tham số
1.Tìm m để phương trình có hai nghiệm trái dấu.
2. Với những giá trị của m mà phương trình có nghiệm. Hãy tìm giá trị lớn nhất và nhỏ nhất trong tất cả các nghiệm đó.
a /
xét ten ta ;(1-2m)^2 - 4(m-3) >0
<=>1-4m+4m^2-4m+12
<=>4m^2 +13 luông đúng với mọi m tham số => phương trình có 2 nhiệm phân biệt x1 x2
cho phương trình x2 - 2mx + m2 - m + 3 = 0 (1), tìm m để phương trình để biểu thức A=x12+x22 có giá trị nhỏ nhất
để phương trình có hai nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)\ge0\Leftrightarrow-m^2-6m-5\ge0\Leftrightarrow m\in\left[-5;-1\right]\)
b. để phương trình có hia nghiệm thì \(m\in\left[-5;-1\right]\) khi đó \(\hept{\begin{cases}x_1+x_2=-\frac{2\left(m+1\right)}{2}=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{cases}\Rightarrow M=-m-1-m^2-4m-3=-m^2-5m-4}\)
hay \(M=-\left(m+1\right)\left(m+4\right)=\left(-1-m\right)\left(m+4\right)\le\left(\frac{-1-m+m+4}{2}\right)^2=\frac{9}{4}\)
Dấu bằng xảy ra khi \(-1-m=m+4\Leftrightarrow m=-\frac{5}{2}\)