K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2020

Câu 1 .

A = 13 + 23 + 33 + ... + 1003 

   = 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100

   = ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )

   = ( 1 + 2 + 3 + .... + 100 )3

Do đó A \(⋮\)1 + 2 + 3 + ... + 100

Câu 2 : 

+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)

Do đó 2100  có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751             ( 1) 

+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)

Do đó 2100 có 3 chữ số tận cùng chia hết cho 8            ( 2)

Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376 

Mà \(376\equiv1\left(mod125\right)\)

=> 2100 chia 125 dư 1

Vậy 2100 chia 125 có số dư là 1

Hok tốt

# owe

30 tháng 1 2020

Câu 1 hình như sai phải ko bạn, sao từ phép nhân sang phép cộng dễ thế?

24 tháng 7 2019

Bài 2 phải là chứng minh chia hết cho 5 chứ nhỉ 

24 tháng 7 2019

Bài 2:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)

                                                      Bài giải    :

8.1 x+y=xy

⇒x-xy+y=0

⇒x(1-y)+(y-1)+1=0

⇒(x-1)(1-y)+1=0

⇒(x-1)(y-1)-1=0

⇒(x-1)(y-1)=1

⇒x-1, y-1 là ước của 1

⇒x-1=1,y-1=1 hoặc x-1=-1,y-1=-1

⇒(x;y)=(2;2),(0;0)

 8.3. 5xy-2y²-2x²+2=0

⇔(x-2y)(y-2x)+2=0

⇔(x-2y)(2x-y)=2

⇒x-2y và 2x-y là ước của 2

Hình như tui nhầm bài thì phải???

30 tháng 1 2020

Câu 2:

Violympic toán 8

Câu 3:Hỏi đáp Toán

Tham khảo nhé!

TL
30 tháng 1 2020

Câu 2:

Tham khảo ở đây

Câu hỏi của Le Thi Hong Van - Toán lớp 6 - Học toán với OnlineMath

5 tháng 8 2019

\(A=\left(n^2+3n+2\right)\left(2n-1\right)-2\left(n^3-2n-1\right)\)

\(A=2n^3+6n^2+4n-n^2-3n-2-2n^3+4n+2\)

\(A=5n^2+5n\)

\(A=5n\left(n+1\right)\)

\(\text{Vì 5⋮5 nên 5n(n+1)⋮5}\)(1)

\(\text{Vì n;n+1 là hai số tự nhiên liên tiếp nên n(n+1)⋮2}\)

\(\Rightarrow5n\left(n+1\right)⋮2\)(2)

\(\text{Từ (1) và (2)}\Rightarrow5n\left(n+1\right)⋮10\text{ vì (2,5)=1}\)

\(\text{Vậy A⋮10}\)

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM => https://www.youtube.com/watch?v=sMvl8_N_N54

30 tháng 7 2019

a, Để 15x^n+2-y^n chia hết cho 3x^3y^4

Suy ra: n+2>=3      và n>=4

Suy ra: n>=1         và n>=4

Đến đay thì bạn tự làm nhé!

1 tháng 7 2019

\(2,n^3+3n^2-n-3\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì n lẻ \(\Rightarrow\)n có dạng \(2k+1\), thay vào ta có :

\(\Rightarrow\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right).2k.\left(2k+2\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì \(k\left(k+1\right)\left(k+2\right)\)là 3 số tự nhiên liên tiếp

 \(\Rightarrow k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(6\)

\(\Leftrightarrow8k\left(k+1\right)\left(k+2\right)\)\(⋮\)\(48\)

\(\Rightarrow n^3+3n^2-n-3\)\(⋮\)\(48\)\(\left(đpcm\right)\)

3 tháng 7 2019

Đề câu 1  bài đầu tiên sai rồi em. VD như n=3 lẻ thì n^2+4n+8 =29 không chia hết cho 8

Đề bài đúng: \(n^2+4n+3\) chia hết cho 8 với mọi n lẻ

Chứng minh: 

\(n^2+4n+3=n^2+n+3n+3=n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n+3\right)\)

Vì n lẻ nên : n=2k+1, k thuộc N

Ta có: \(n^2+4n+3=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

Vì (k+1) và (k+2) là hai số tự nhiên liên tiếp nên tích của nó sẽ chia hết cho 2

=> 4 (k+1)(k+2) chia hết cho 8

nên \(n^2+4n+3\)chia hết cho 8 với n là số tự nhiên lẻ.

5 tháng 11 2018

\(<=> 9x^2-6x+1+(2x+1)^2+2(3x-1)(2x-1)\)

\(<=> 9x^2-6x+1+4x^2+4x+1+(6x-2)(2x-1)\)

 \(<=> 9x^2-6x+1+4x^2+4x+1+12x^2-6x-4x+2\) 

 \(<=> 25x^2-12x+4\)

5 tháng 11 2018

có bạn nào có thể giúp mình giải câu b và d được không ạ mình cần gấp