K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 S = 2 + 22 + 23 + 24 + .......+ 22015(1)

2S=22+23+25+....+22016(2)

Lấy (2)-(1)

2S-S=(22+23+25+....+22016)-(2 + 22 + 23 + 24 + .......+ 22015)

      S=22016-2

        =(24)504-2

        =16504-2

        =....6-2

        =....4

Vậy chữ số tận cùng của S là 4

29 tháng 12 2018

  S = 2 + 22 + 23 + 24 + .......+ 22015

2S = 22+23+24+25+...+22015+22016

Lấy 2S -S ta có

 2S - S = ( 22+23+24+25+...+22015+22016 ) - ( 2 + 22 + 23 + 24 + .......+ 22015)

 S        =  22016 - 2

Ta có 22016 = (24)504 

                       = 16504

                   = (...6)

=> S = (...6) - 2

=> S = (...4)

Vậy số tận cùng của tổng trên là 4

6 tháng 1 2016

S= 1+ ( 3+33) + ( 32 +34) + ...+ (328+330)

   = 1 + 3.10 + 32.10 +........+ 328.10

  = 1+ 10.( 3+32 + .....+ 328)  chia 10 dư 1

=> S có chữ số tạn cùng là 1

 

5 tháng 1 2016

bạn nhấn S với 3 rồi lấy 3S - S la ra

Bài 4:

Ta có: 1975^430 có chữ tận cùng bằng 5; suy ra 1975^430+2004 có chữ số tận cùng bằng 9. 
Mặt khác: 1980*z tận cùng bằng 0với mọi z . Giả sử tồn tại các số tự nhiên x;y;z thỏa mãn biểu thức đã cho thì 19^x+5^y phải có chữ số tận cùng bằng 9 (1) 
Số 19^x chỉ tận cùng bằng 1 hoặc 9 với mọi x; 5^y có chữ số tận cùng bằng 1(y=0) hoặc 5 
Nếu 19^x tận cùng bằng 1 thì theo (1) 5^y tận cùng bằng 8 ( vô lý) 
Nếu 19^x tận cùng bằng 9 thì theo (1) 5^y tận cùng bằng 0 ( vô lý) 
Vậy không tồn tai các số tự nhiên x;y;z để 19^x+5^y+1980*z= 1975^430+2004

cách 2

thành 1980 * z, và xét cả th số tự nhiên là 0), không biết bạn có sửa lại không 
Tôi chẳng đăng ký bản quyền làm gì nhưng làm thế là rất xấu 
--------------- 
Với tôi số tự nhiên là > 0. Nếu bạn có cả số 0 thì cũng được 
19^x + 5^y + 1980 * z= 1975^430 + 2004 ♦ 
--- 
19^x chỉ tận cùng là 1 hoặc 9: 9^0 = 1, 9*9 = 8(1), 1*9 = 9 
5^y chỉ tận cùng là 1 hoặc 5: 5^0 = 1, 5^n tận cùng là 5 với n ≥ 1 
=> VT chỉ tận cùng là 0, 2, 4 hoặc 6 
tương tự có VP tận cùng là 9 
=> không tồn tại x, y, z sao cho tm ♦ 

28 tháng 12 2015

dễ mà tick nha mk làm cho

10 tháng 1 2016

a) S=1-3+3^2-3^3+...+3^98-3^99

S=(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)

S=-20+3^4(1-3+3^2-3^3)+...+3^96(1-3+3^2+3^3)

S=-20+3^4(-20)+...+3^96(-20)

S=-20(1+3^4+...+3^96)

=>S chia hết cho -20

b) S=1-3+3^2-3^3+...+3^98-3^99

3S=3(1-3+3^2-3^3+...+3^98-3^99)

3S=3-3^2+3^3-3^4+...+3^99-3^100

3S+S=(3-3^2+3^3-3^4+...+3^99-3^100)+(1-3+3^2-3^3+..+3^98-3^99)

4S=1-3^100

S=(1-3^100)/4

=>1-3^100 chia hết cho 4 (vì z là số nguyên)

=>3^100-1 chia hết cho 4

=>3^100 chia 4 dư 1

25 tháng 11 2018

s1=1+2+3+...+99

s1=99+98+...+1

2s1=100+100+....+100

2s1=100.99

s1=100.99:2=4950(mấy bài sau lam tương tự nha)

25 tháng 11 2018

4+4^2+4^3+...+4^90 chia hết cho 21

=(4+4^2+4^3)+...+(4^88+4^89+4^90)

=84.1+(4^4+4^5+4^6+...+4^90)

vì 84 chia hết cho 21 suy ra tổng trên chia hét cho 21         (ĐPCM)

6 tháng 11 2015

a) Vì 7^n có tận cùng là lẻ, mà A= 7+7^2+.....+7^8 là tổng của 7 số lẻ nên a có tận cùng là số lẻ.

b) Có A= 7+7^2+7^3+7^4+7^5+7^6+7^7+7^8

         A= (7+7^3) + (7^2+7^4) + (7^5+7^7) + (7^6+7^8)

         A= 7.(1+7^2) + 7^2 .(1+7^2) + 7^5.(1+7^2) + 7^6.(1+7^2) 

         A= 7.50 + 7^2.50 + 7^5.50 + 7^6.50 = (7+7^2+7^5+7^6) .50 

     Do đó A chia hết cho 50 => A chia hết cho 5.

c) Vì A lẻ và A chia hết cho 5 => A có tận cùng là số 5.

         

15 tháng 4 2017

ban Mai xuan vịnh sai rồi