Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.2^2.2^3.2^4.........2^{100}\)
\(=2^{1+2+3+4+......+100}\)
\(=2^{5050}\)
(723 . 542) :1084
=373248.2916:136048896
=1088391168:136048896
=8
Chúc bạn học tốt
Mk nghĩ đề câu 1 là chứng minh 215+211 chia hết cho 17.
Đây là cách giải của mk:
215+211= 211(24+1)= 211(16+1)= 211.17 chia hết cho 17.
=> 215+211 chia hết cho 17.
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)
\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3
\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)
\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)
\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)
\(S=7+2^3\cdot7+....+2^{98}\cdot7\)
\(S=7\left(1+2^3+...+2^{98}\right)\)
=> S chia 7 dư 0 hay S chia hết cho 7
A = 2o + 21 + 22 + ... + 22010
=> 2A = 21 + 22 + 23 + ... + 22010 + 22011
Mà A = 20 + 21 + 22 + ... + 22010
=> 2A - A = A = 1 + 22011
B = 1 + 3 + 32 + ... + 3100
=> 3B = 3 + 32 + 33 + ... + 3100 + 3101
Mà B = 1 + 3 + 32 + ... + 3100
=> 3B - B = 2B = 2 + 3101
=> B = ( 2 + 3101 ) : 2
A = 21 + 22 + 23 + ..... + 2100
2A = 22 + 23 +24 + ... + 2100 + 2101
2A - A = A = ( 2101 + 2100 + ... + 22 ) - ( 2100 + 299 + ... + 21 )
A = 2101 - 21
A = 2101 - 2
Hok tốt!
\(A=2+2^2+2^3+..+2^{100}\)
\(\Rightarrow2A=2^2+2^3+..+2^{101}\)
\(\Rightarrow2A-A=2^{101}-1\)
\(\Rightarrow A=2^{101}-1\)