K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

Giải:
Gọi 2n+1=a2,3n+1=b2(a,bN,10≤n≤99)

10≤n≤99⇒21≤2n+1≤199

⇒21≤a2≤199

Mà 2n + 1 lẻ

⇒2n+1=a2∈{25;49;81;121;169}

n∈{12;24;40;60;84}

⇒3n+1∈{37;73;121;181;253}

Mà 3n + 1 là số chính phương

⇒3n+1=121⇒n=40

Vậy n = 40

nhớ cho k nhé (tham khảo thôi đừng chép)

6 tháng 1 2016

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

6 tháng 1 2016

+Ta có: 2n+1 và 3n+1 là số chính phương. 
+Áp dụng bài 7, suy ra n chia hết cho 40. Mà n là số có 2 chữ số.
=> n=40 hoặc n=80.
+Trường hợp n=80 thì loại do 2.80+1 không phải là số chính phương.
Vậy n=40 thoả mãn đề bài

3 tháng 3 2019

từ đề bài suy ra 10<=n<=99,suy ra 21<=2n+1<=199

. vì 2n+1 là số lẻ nên có các giá trị là 25,49,81,121,169 tương ứng n có các giá trị 12,24,40,60,80

mà 3n+1 có các giá trị 37,73,121,181,253,nên chỉ có 121 là chung 

suy ra:n=40

3 tháng 3 2019

Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40

8 tháng 1 2021

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

8 tháng 1 2021

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

Vì n và 2n có tổng các chữ số = nhau nên n và 2n có cùng số dư khi chia cho 9

=> 2n -n  chia hết cho 9

=> 1n chia hết cho 9

=> n chia hết cho 9 vì UCLN( 9, 1)= 1

=> đpcm 

19 tháng 1 2016

gọi tổng chữ số của số đó là k 

\(\Rightarrow\)n-k chia hết cho 9 và 2n-k chia hết cho 9

\(\Rightarrow\)(2n-k)-(n-k) chia hết cho 9

\(\Rightarrow\)n chia hết cho 9

Vậy n chia hết cho 9