Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{3}{5}=\frac{18}{30};\frac{7}{10}=\frac{21}{30}\)
Gọi tử số của một phân số thỏa mãn là a
\(\Rightarrow\frac{18}{30}< \frac{a}{30}< \frac{21}{30}\Rightarrow a\in\left\{19,20\right\}\)
Vậy, tổng là : \(\frac{19+20}{30}=\frac{39}{30}\)
b)
\(\frac{1}{6}=\frac{2}{12}\)
Gọi mẫu của một phân số thỏa mãn là b
\(\Rightarrow\frac{2}{12}< \frac{2}{b}< \frac{2}{9}\Rightarrow b\in\left\{11;10\right\}\)
Vậy, tổng là : \(\frac{2}{11}+\frac{2}{10}=\frac{20+22}{110}=\frac{42}{110}=\frac{21}{55}\)
Bài 1:
Ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)
=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)
=> ab = 92
Bài 2:
Hữu hạn: -7/16; 2/125; -9/8
Vô hạn tuần hoàn: -5/3; 5/6; -3/11
Chúc bạn học tốt !!!
Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)
\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)
Vậy \(\overline{ab}=92\)
Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)
Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)
Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)
\(a.9\cdot3^2\cdot\frac{1}{81}=\frac{3^2.3^2.1}{3^4}=\frac{3^4}{3^4}=1\)
\(b.2\frac{1}{2}+\frac{4}{7}:\left(\frac{-8}{9}\right)\)
\(=\frac{5}{2}+\frac{4}{7}.\left(\frac{-9}{8}\right)\)
\(=\frac{5}{2}+\frac{-9}{14}=\frac{13}{7}\)
\(c.3,75.\left(7,2\right)+2,8.\left(3,75\right)\)
\(=3,75.\left(7,2+2,8\right)\)
\(=3,75.10=37,5\)
\(d.\left(\frac{-5}{13}\right).\frac{3}{7}+\left(\frac{-8}{13}\right).\frac{3}{7}+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left[\left(\frac{-5}{13}\right)+\left(\frac{-8}{13}\right)\right]+\left(\frac{-4}{7}\right)\)
\(=\frac{3}{7}.\left(-1\right)+\frac{-4}{7}\)
\(=\frac{-3}{7}+-\frac{4}{7}=-1\)
\(e.\sqrt{81}-\frac{1}{8}.\sqrt{64}+\sqrt{0,04}\)
\(=9-\frac{1}{8}.8+0,2\)
\(=9-1+0,2=8+0,2=8,2\)
bài 1
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=>\frac{a+b+c}{b+c+a}=1=>a=b=c\)
bài 2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{1}{a+b+c}\)
bài 1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=> \(\frac{a}{b}=1\)
\(\frac{b}{c}=1\)
\(\frac{c}{a}=1\)
=> a=b (1)
b=c (2)
c=a (3)
=> a=b=c
Làm mẫu câu a nhé:
Ta có: \(2x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)
Áp dụng t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{2}=\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2-y^2}{9-4}=5\)
\(\Rightarrow x=3.5=15\)
\(y=5.2=10\)
Ý 1:
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{2}=\frac{x^2-y^2}{3^2-2^2}=\frac{25}{5}=5\)
=> x,y=...
\(\frac{x}{3}=\frac{y}{4}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{3x-2y}{3.3-2.4}=\frac{5}{1}=5\)
=>x,y=...
\(3x=2y=5z\Leftrightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng t/c DTSBN ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{y-2x}{5-2.2}=\frac{5}{1}=5\)
=>x,y,z=....
a)
- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3
=> A lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0
=> x + 3 = 0
x = -3
Vậy..........
b)
Ta có: B lớn hơn hoặc = / x - 1 / + / x - 3 / = / x - 1 / + / 3 - x /
Mà / x - 1 / + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x / = /2/ = 2
=> B lớn hơn hoặc = 2.
Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0. (1)
Giải (1) được x = 2 TM.
Vậy min B = 2 <=> x=2.
(x+1)^2>=0 và (y-1)^2>=0
=>C>=-10
Dấu = xảy ra khi x+1=0,y-1=0
=>x=-1,y=1
Vậy C=-10 khi x=-1,y=1
k cho mk nha