K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt{-7x}\)có nghĩa \(\Leftrightarrow-7x\ge0\)\(\Leftrightarrow x\le0\)

4 tháng 7 2021

Bài toán :

căn bậc hai(-7*x)

Kết quả: Tìm tập xác định

x∈(-∞, 0]

HT~

4 tháng 7 2021

Để căn thức \(\sqrt{x^2-8x-9}\) có nghĩa 

<=> x2 - 8x - 9 \(\ge0\)

<=> (x - 4)2 \(\ge25\)

<=> |x - 4| \(\ge5\)

<=> \(\orbr{\begin{cases}x-4\ge5\\x-4\le-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)

4 tháng 7 2021

\(\sqrt{\frac{2x-4}{5-x}}\ge0\)

\(< =>\frac{2x-4}{5-x}\ge0;5-x\ne0\)

\(x\ne5\)

\(\frac{2x-4}{5-x}\ge0\)

\(TH1:2x-4\ge0;5-x\ge0\)

\(\hept{\begin{cases}x\ge2\\x\le5\end{cases}< =>2\le x\le}5\)

\(TH2:2x-4< 0;5-x< 0\)

\(\hept{\begin{cases}x< 2\\x>5\end{cases}}\)pt vô no

vậy ddeeer căn thức đc xác định thì\(2\le x\le5\)

4 tháng 7 2021

ĐKXĐ : x \(\ne5\)

Để \(\sqrt{\frac{2x-4}{5-x}}\text{ có nghĩa }\Rightarrow\frac{2x-4}{5-x}\ge0\)

TH1 : \(\hept{\begin{cases}2x-4\ge0\\5-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x< 5\end{cases}}\Leftrightarrow2\le x< 5\)

TH2 : \(\hept{\begin{cases}2x-4\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x>5\end{cases}}\Leftrightarrow x\in\varnothing\)

Để căn thức \(\sqrt{\frac{2x-4}{5-x}}\)thì \(2\le x< 5\)

4 tháng 7 2021

a,\(\sqrt{\frac{x-3}{4-x}}\)

Biểu thức trên xác định

 \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)

Vậy biểu thức trên xác định khi \(3\le x< 4\)

b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)

Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)

=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)

                                             \(\Leftrightarrow2x>3\)

                                               \(\Leftrightarrow x>\frac{3}{2}\)

Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)

a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)

\(\Leftrightarrow3\le x< 4\)

b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)

\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)

mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)

nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)

\(\Leftrightarrow x>\frac{3}{2}\)

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0
1 tháng 6 2017
  1. \(\sqrt{\frac{2x^2+1}{7x}}\)ĐK \(\hept{\begin{cases}\frac{2x^2+1}{7x}\ge0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>0\\x\ne0\end{cases}\Leftrightarrow}x>0}\)
  2. \(\frac{\sqrt{2x-1}}{x^2-9}=\frac{\sqrt{2x-1}}{\left(x-3\right)\left(x+3\right)}\)ĐK \(\hept{\begin{cases}2x-1\ge0\\\left(x-3\right)\left(x+3\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\\x\ne-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge\frac{1}{2}\\x\ne3\end{cases}}}\)
  3. \(\sqrt{\frac{x+2}{5-x}}\)ĐK \(\hept{\begin{cases}\frac{x+2}{5-x}\ge0\\5-x\ne0\end{cases}}\)
  • \(TH1:\hept{\begin{cases}x+2\ge0\\5-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-2\\x< 5\end{cases}\Leftrightarrow}-2\le x< 5}\)
  • \(TH2:\hept{\begin{cases}x+2\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le-2\\x>5\end{cases}VN}\)

Vậy đk là : \(-2\le x< 5\)

5 tháng 8 2018

Để bt sau có nghĩa

\(\sqrt{x+1}\ge0\Rightarrow x+1\ge0\Leftrightarrow x\ge-1\)

Vậy với \(x\ge-1\)thì bt sau có nghĩa