K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2021

Ta có \(\cot\alpha=\tan\beta\) ; \(\cos^2\alpha+\sin^2\alpha=1\)

Khi đó \(-\frac{\cot58^{\text{o}}+\tan27^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}+1=\frac{-\cot58^{\text{o}}-\tan27^{\text{o}}+\cot63^{\text{o}}+\tan32^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}\)

\(=\frac{\left(\tan32^{\text{o}}-\cot58^{\text{o}}\right)+\left(\cot63^{\text{o}}-\tan27^{\text{o}}\right)}{\cot63^{\text{o}}+\tan32^{\text{o}}}=0\)

=> \(\frac{\cot58^{\text{o}}+\tan27^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}=1\)

=> \(\cos^255^{\text{o}}-\frac{\cot58^{\text{o}}+\tan27^{\text{o}}}{\cot63^{\text{o}}+\tan32^{\text{o}}}=\cos^255^{\text{o}}-1=-\sin^255\) 

a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)

=1+1+1+1/2

=3,5

b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)

=1-1-1+1/4

=-1+1/4=-3/4

c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)

=1/2

16 tháng 7 2017

Hình như sai đề?

Hàm Acos trả về arccosin, hoặc cosin nghịch đảo, của đối số hàm này. Arccosin là góc mà cosin là đối số. Góc trả về được tính bằng radian trong phạm vi 0 (không) đến π.

Hàm Acot trả về giá trị chính của arccotang, hoặc cotang nghịch đảo, của đối số hàm này. Góc trả về được tính bằng radian trong phạm vi 0 (không) đến π.

Hàm Asin trả về arcsin, hoặc sin nghịch đảo, của đối số hàm này. Arcsin là góc mà sin là đối số. Góc trả về được tính bằng radian trong phạm vi -π/2 đến π/2.

Hàm Atan trả về arctang, hoặc tang nghịch đảo, của đối số hàm này. Arctang là góc mà tang là đối số. Góc trả về được tính bằng radian trong phạm vi -π/2 đến π/2.

Hàm Atan2 trả về arctang hoặc tang nghịch đảo của tọa độ x và y được chỉ định làm đối số. Arctang là góc từ trục x đến một đường thẳng chứa gốc (0, 0) và một điểm có tọa độ (xy). Góc được tính theo radian giữa -π và π, không bao gồm -π. Một kết quả dương thể hiện một góc ngược chiều kim đồng hồ từ trục x; một kết quả âm tính đại diện cho một góc theo chiều kim đồng hồ. Atan2( ab ) bằng với Atan( b/a ), ngoại trừ a_ có thể bằng 0 (không) với hàm _ Atan2.

2 tháng 10 2021

\(sin73^0=cos\left(90^0-73^2\right)=cos17^0\)

\(cos69^0=sin\left(90^0-69^0\right)=sin21^0\)

\(tan71^0=cot\left(90^0-71^0\right)=cos19^0\)

\(cot75^0=tan\left(90^0-75^0\right)=tan15^0\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2019

Lời giải:

a)

\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)

\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)

b)

Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:

\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)

\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)

\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)

\(=1+0+1=2\)

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

a)

\(A=\frac{\sin ^2a-\cos ^2a}{\sin a\cos a}=\frac{\sin a}{\cos a}-\frac{\cos a}{\sin a}=\frac{\sin a}{\cos a}-\frac{1}{\frac{\sin a}{\cos a}}=\tan a-\frac{1}{\tan a}\)

\(=\sqrt{3}-\frac{1}{\sqrt{3}}\)

b)

Sử dụng công thức: \(\sin ^2a+\cos ^2a=1; \cos a=\sin (90-a); \tan a=\cot (90-a)\) ta có:

\(B=\cos ^255^0-\cot 58^0+\frac{\tan 52^0}{\cot 38^0}+\cos ^235^0+\tan 32^0\)

\(=\sin ^2(90^0-55^0)-\tan (90^0-58^0)+\frac{\tan 52^0}{\tan (90^0-38^0)}+\cos ^235^0+\tan 32^0\)

\(=(\sin ^235^0+\cos ^235^0)-\tan 32^0+\tan 32^0+\frac{\tan 52^0}{\tan 52^0}\)

\(=1+0+1=2\)

25 tháng 7 2018

áp dụng công thức sin2a+cos2a=1

A= sin2a +cos2a-2sina.cosa-sin2a-cos2a+2sina.cosa = 0

B=(sỉn2a+cos2a)2 =12 =1

C= cos2a(cos2a+sin2a)+ sin2a=cos2a+sin2a=1

D=sin2a(sin2p+cos2p)+cos2a=sin2a+cos2a=1

E= (sin2a+cos2a)(sin4a-sin2a.cos2a+cos4a)+3sin2a.cos2a

=sin4a+2sin2a.cos2a+ cos4a=(sin2a+cos2a)2=1

3 tháng 7 2017

Ta áp dụng công thức: Nếu 2 góc phụ nhau thì:

sin góc này = cos góc kia và ngược lại

Kết hợp sử dụng công thức: \(\sin^2\alpha+\cos^2\alpha=1\)ta có:

\(A=\cos^220^o+\cos^230^o+\cos^240^o+\cos^250^o+\cos^260^o+\cos^270^o\)

\(=\cos^220^o+\cos^230^o+\cos^240^o+\sin^240^o+\sin^230^o+\sin^220^o\)

\(=\left(\cos^220^o+\sin^220^o\right)+\left(\cos^230^o+\sin^230^o\right)+\left(\cos^240^o+\sin^240^o\right)\)

\(=1+1+1=3\)

3 tháng 7 2017

thanks ^^