Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABAC=52⇒AB=52ACABAC=52⇒AB=52AC
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
AB2+AC2=BC2AB2+AC2=BC2
=>AB2+AC2=262 (1)
Thay AB=52ACAB=52AC vào (1) ta được:
(52AC)2+AC2=262⇒254AC2+AC2=676(52AC)2+AC2=262⇒254AC2+AC2=676
=>294AC2=676⇒AC2≈93,2⇒AC≈9,7
AB/AC = 5/2 ⇒ AB = 5/2AC
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\) \(\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\) \(\Rightarrow\frac{29}{4}AC^2=676\) \(\Rightarrow AC^2\approx93,2\left(cm\right)\)
⇒ AC ≈ 9,7(cm)
=> AB = 5/2 AC = 5/2 . 9,7 = 24,25(cm)
A B C D
Bài làm
Theo định lí Py-ta-go
Ta có: AD2 + DC2 = AC2 = AB2
BD2 + DC2 = BC2
=> 2( AD2 + DC2 ) + BD2 + DC2 = AC2 + AB2 + BC2 ( 1 )
=> 3DC2 + 2AD2 + BD2 = AC2 + AB2 + BC2 ( 2 )
Từ ( 1 ) và ( 2 ) => 2( AD2 + DC2 ) + BD2 + DC2 = 3DC2 + 2AD2 + BD2
=> 2( AD2 + DC2 ) + BD2 + DC2 = 2( AC2 + AD2 ) + DC2 + BD2
=> AD2 + DC2 + BD2 + DC2 = AC2 + AD2 + DC2 + BD2
Do đó: AB2 + BC2 + CA2 = BD2 + 2AD2 + 3CD2 ( đpcm )
# Chúc bạn học tốt #
Đây là cách làm của mik, mong các bạn xem hộ, hình như trên
Do tam giác ABC cân tại A
=> AB=AC
=> AB2 = AC2
Do CD vuông góc với AB
=> Tam giác ADC là tam giác vuông tại D
=> AD2 + DC2 = AC2 (theo định lý Py-ta-go)
Do CD vuông góc với AB
=> Tam giác DBC là tam giác vuông tại D
=> BD2 + DC2 = BC2 (theo định lý Py-ta-go)
Ta có: BD2 + 2AD2 + 3CD2 = BD2 + AD2 + AD2 + CD2 + CD2 + CD2
= (CD2 + BD2) + (CD2 + AD2) + (CD2 + AD2)
= BC2 + AC2 + AC2
hay BC2 + AC2 + AB2
=> AB2 + BC2 + AC2 = BD2 + 2AD2 + 3CD2 (đpcm)
Nhờ các bạn xem hộ mik với ạ, mik cảm ơn
A B C M H K P Q D E x y
a) Xét \(\Delta\)AMC và \(\Delta\)AHB có: ^ACM = ^ABH (=450); AC=AB; ^MAC = ^BAH (Cùng phụ ^BAM)
=> \(\Delta\)AMC = \(\Delta\)AHB (g.c.g) => AM=AH (2 cạnh tương ứng). Tương tự: AM=AK
=> AH=AK=AM. Hay AH=AK=1/2.HK (đpcm)
b) Gọi D và E lần lượt là hình chiếu của A trên MH và MK.
Xét \(\Delta\)HMK: MA trung tuyến (Do DH=AK), MA=AH=AK; MA vuông góc HK
=> \(\Delta\)HMK vuông cân tại M => ^HMK = 900 ; MA là phân giác ^HMK.
Xét ^HMK: MA là tia phân giác; AD và AE vuông góc MH; MK => AD=AE
Dễ thấy: ^DAE = 900 (Vì ^ADM = ^AEM = ^EMD = 900) => ^DAP = ^EAQ (Cùng phụ ^DAQ)
Xét \(\Delta\)ADP và \(\Delta\)AEQ có: ^ADP = ^AEQ (=900); AD=AE; ^DAP = ^EAQ (cmt)
=> \(\Delta\)ADP = \(\Delta\)AEQ (g.c.g) => AP=AQ (2 cạnh tương ứng).
Từ đó: \(\Delta\)PAQ vuông cân tại A. Dễ dàng chỉ ra PQ // BC (đpcm).
Cách 2: chứng minh phần b:
Xét tg HMK
có: HA = AK ( chứng minh phần a); \(MA\perp HK⋮A\)(gt)
=> tg HMK cân tại M ( định lí)
=> HM = MK (t/c)
Xét tg ABM và tg ACK
có: AB = AC(gt); ^ABM = ^ACK ( dễ chứng minh ^ABM = ^ACK = 45 độ); ^BAM = ^CAK ( khi cộng với ^MAC đều = 90 độ)
=> tg ABM = tg ACK ( c-g-c)
=> BM = CK ( 2 cạnh t/ ư)
Xét tg BMH vuông tại B và tg CKM vuông tại C
có: BM = CK (cmt); MH = KM (cmt)
=> tg BMH = tg CKM ( cgv-ch)
=> ^BHP = ^ CMQ ( 2 góc t/ ư)
HB = MC ( 2 cạnh t/ ư)
Xét tg HBP và tg MCQ
có: ^HBP = ^ MCQ ( dễ chứng minh ^HBP = ^MCQ = 45 độ); HB = MC (cmt); ^BHP = ^CMQ (cmt)
=> tg HBP = tg MCQ ( g-c-g)
=> BP = CQ ( 2 cạnh t/ ư)
=> AP = AQ ( = AB- BP = AC - CQ)
và ^PAQ = 90 độ (gt)
=> tg PAQ vuông cân tại A ( định lí)
=> ^APQ = 45 độ
=> ^APQ = ^CBP ( = 45 độ)
mà ^APQ và ^CBP đồng vị
=> PQ // BC ( định lí)
...
xl bn! bn theo cách bn kia vẫn đúng đó, mk chỉ thêm 1 cách nữa thôi!
Bài làm
~ Tự vẽ hình, đó mik lm = đt nên k vẽ đc hình ~
a) Xét ∆BOA và ∆COK có:
OA = OK ( GT )
GÓC BOA = GÓC COK ( HAI GÓC ĐỐI )
OB = OC ( O LÀ TRUNG ĐIỂN BC )
=> ∆BOA = ∆COK ( c.g.c )
=> AB = KC ( hai cạnh tương ứng )
=> Góc ABC = GÓC KCB ( HAI GÓC TƯƠNG ỨNG )
MÀ hai góc này ở vị trí số le trong.
=> AB // CK
Mà BA | AC
=> CK | AC
Xét ∆ABC và ∆CKA có:
AB = CK ( cmt )
Góc BAC = góc KCA ( đó AB và CK cùng vuông góc với AC )
Cạnh AC chung.
=> ∆ABC = ∆CKA. ( c.g.c )
Bài alfm
Vì tâm giác ABC = tâm giác AKC
=> BC = AK.
Mà AO là trung điểm AK.
=> AO = 1/2 AK
Hay AO = 1/2BC
ta có: \(IE\perp BC⋮E\)
\(\Rightarrow\widehat{IEB}=90^0\)
mà \(\widehat{AEI}+\widehat{IEB}=\widehat{AEC}\)
thay số: \(\widehat{AEI}+90^0=\widehat{AEC}\)
\(\Rightarrow\widehat{AEC}>90^0\)
Xét \(\Delta AEC\)
có: góc AEC > 90 độ
=> góc AEC > góc C
=> AC > AE ( quan hệ góc và cạnh đối diện)
Học tốt nhé bn !!!
B H A C 20cm 52cm 48cm
a)
Ta có: BC2=52cm2 = 5704 (cm)
=> AC2+ AB2 =482+202=2304+400=2704 (cm)
=> BC2=AC2+AB2=2704(cm)
=> \(\Delta ABC\) là tam giác vuông ở A
đpcm.
b)
Diện tích tam giác ABC là:
48.20:2=480 (cm2)
Độ dài chiều cao AH là:
480.2:52 = 260/13 (cm)
Vậy.....
B A C H 20 48 52
a, Ta có : \(BC^2=52^2=2704\)
\(AB^2+AC^2=20^2+48^2=400+2304=2704=52^2\)
Vậy : \(BC^2=AB^2+AC^2\)
Tam giác ABC vuông ở A
b, Ta có : \(S_{ABC}=\frac{1}{2}AB\cdot AC=\frac{1}{2}\cdot20\cdot48=10\cdot48=480\left(cm^2\right)\)
Mặt khác \(S_{ABC}=\frac{1}{2}AH\cdot BC,AH=\frac{2S_{ABC}}{52}=\frac{2\cdot480}{52}\approx18,5\left(cm\right)\)
Phần b bạn dưới làm sai
ta có:tam giác ABC vuông tại A=> góc B+góc C=900
mà A=2B,A=900=>B=450
=>C=450 hay tam giác ABC vuông cân tại A=>AB=AC
áp dụng đ/l PyTaGo ta có:
BC2=AB2+AC2
mà AB=AC(cmt)
=>BC2=\(\left(2\sqrt{2}\right)^2+\left(2\sqrt{2}\right)^2=16\)
=>BC=4cm
BC=16cm
bn chờ chút,mk cho bn cách giải