Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh: \(\frac{23}{48}< \frac{47}{92}\)(Nhân chéo tử này với mẫu kia bên nào có kết quả lớn hơn thì bên đó lớn hơn bạn nhekk)
Ta có \(\frac{23}{48}< \frac{23}{46}=\frac{46}{92}< \frac{47}{92}\)
Vậy \(\frac{23}{48}< \frac{47}{92}\)
Quy đồng tử số : 6/7 = 6 x20/7 x 20 = 120/140 . Vì 140 lớn hơn 137 nen 120/140 < 120/137 hay 6/7 < 120/137 .Vay 6/7 < 120/37.
a) 6/7 = 120/ 140
Vì 120/140 < 120/137 nên 6/7 < 120/137
b)18/75 = 6/25 ; 28/112 = 1/4
Vì 6/25 : 1/4 = 24/25 nên 18/75 < 28/112
c)Ta có: 1 - 17/20 = 3/20 ; 1 - 22/25 = 3/25
Vì 3/20 > 3/25 nên 17/20 < 22/25
mik nha
a)\(\frac{16.17-5}{16.16+11}=\frac{16.17-16+11}{16.16+11}\)\(=\frac{16.\left(17-1\right)+11}{16.16+11}=\frac{16.16+11}{16.16+11}=1\)
b) \(\frac{45.16-17}{28+45.15}=\frac{45.\left(15+1\right)-17}{28+45.15}\)\(=\frac{45.15+45-17}{28+45.15}=\frac{45.15+28}{28+45.15}=1\)
c) \(\frac{7256.4375-725}{3650+4375.7255}=\frac{\left(7255+1\right).4375-725}{3650+4375.7255}\)\(=\frac{7255.4375+4375-725}{3650+4375.7255}\)\(=\frac{7255.4375+3650}{3650+4375.7255}=1\)
Câu C nhớ sửa 725 thành 7255 nha !
Bài giải
\(a,\text{ }\frac{16\cdot17-5}{16\cdot16+11}=\frac{16\cdot16+16-5}{16\cdot16+11}=\frac{16\cdot16+11}{16\cdot16+11}=1\)
\(b,\text{ }\frac{45\cdot16-17}{28+45\cdot15}=\frac{45\cdot15+45-17}{45\cdot15+28}=\frac{45\cdot15+28}{45\cdot15+28}=1\)
\(c,\text{ }\frac{7256\cdot4375-725}{3650+4375\cdot7255}=\frac{4375\cdot7255+4375-725}{4375\cdot7255+3650}=\frac{4375\cdot7255+3650}{4375\cdot7255+3650}=1\)
\(\frac{210}{209}>1;\frac{3}{2}>1;\frac{28}{28}=1;\frac{7}{8}<1;\frac{5}{6}<1;\frac{2120}{2121}<1\)
ta co ta co
\(\frac{210}{209}-\frac{1}{209}=1\) \(\frac{7}{8}+\frac{1}{8}=1\)
\(\frac{3}{2}-\frac{1}{2}=1\) \(\frac{5}{6}+\frac{1}{6}=1\)
vi \(\frac{1}{209}<\frac{1}{2}\) nen \(\frac{210}{209}<\frac{3}{2}\) \(\frac{2120}{2121}+\frac{1}{2121}=1\)
vi \(\frac{1}{6}>\frac{1}{8}>\frac{1}{2121}nen\frac{5}{6}<\frac{7}{8}<\frac{2120}{2121}\)
--->\(\frac{5}{6}<\frac{7}{8}<\frac{2120}{2121}<\frac{28}{28}<\frac{210}{209}<\frac{3}{2}\)
Bài làm
c ) Ta có :
\(\frac{2017}{2018}< 1\)
\(\frac{12}{11}>1\)
\(\Rightarrow\frac{2017}{2018}< \frac{12}{11}\)
trả lời
a, quy đồng rồi so sánh
b,quy đồng rồi so sánh
c,phân số nào có tử nhỏ hơn mẫu khi so sành với phân số có tử lớn hơn mẫu đều bé hơn
d,quy đồng rồi so sánh
chắc vậy chúc bn học tốt
Bài 1:
Ta có:
\(N=\frac{2017+2018}{2018+2019}=\frac{2017}{2018+2019}+\frac{2018}{2018+2019}\)
Do \(\hept{\begin{cases}\frac{2017}{2018+2019}< \frac{2017}{2018}\\\frac{2018}{2018+2019}< \frac{2018}{2019}\end{cases}\Rightarrow\frac{2017}{2018+2019}+\frac{2018}{2018+2019}< \frac{2017}{2018}+\frac{2018}{2019}}\)
\(\Leftrightarrow N< M\)
Vậy \(M>N.\)
Bài 2:
Ta có:
\(A=\frac{2017}{987653421}+\frac{2018}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}\)
\(B=\frac{2018}{987654321}+\frac{2017}{24681357}=\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
Do \(\hept{\begin{cases}\frac{2017}{987654321}+\frac{2017}{24681357}=\frac{2017}{987654321}+\frac{2017}{24681357}\\\frac{1}{24681357}>\frac{1}{987654321}\end{cases}}\)
\(\Rightarrow\frac{2017}{987654321}+\frac{2017}{24681357}+\frac{1}{24681357}>\frac{1}{987654321}+\frac{2017}{987654321}+\frac{2017}{24681357}\)
\(\Leftrightarrow A>B\)
Vậy \(A>B.\)
Bài 3:
\(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}=1-\frac{1}{2017}+1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{3}{2016}\)
\(=1+1+1+1-\frac{1}{2017}-\frac{1}{2018}-\frac{1}{2019}+\frac{3}{2016}\)
\(=4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)\)
Do \(\hept{\begin{cases}\frac{1}{2017}< \frac{1}{2016}\\\frac{1}{2018}< \frac{1}{2016}\\\frac{1}{2019}< \frac{1}{2016}\end{cases}\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}< \frac{1}{2016}+\frac{1}{2016}+\frac{1}{2016}=\frac{3}{2016}}\)
\(\Rightarrow\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\)âm
\(\Rightarrow4-\left(\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}-\frac{3}{2016}\right)>4\)
Vậy \(\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2016}>4.\)
Bài 4:
\(\frac{1991.1999}{1995.1995}=\frac{1991.\left(1995+4\right)}{\left(1991+4\right).1995}=\frac{1991.1995+1991.4}{1991.1995+4.1995}\)
Do \(\hept{\begin{cases}1991.1995=1991.1995\\1991.4< 1995.4\end{cases}}\Rightarrow1991.1995+1991.4< 1991.1995+1995.4\)
\(\Rightarrow\frac{1991.1995+1991.4}{1991.1995+4.1995}< \frac{1991.1995+1995.4}{1991.1995+4.1995}=1\)
\(\Rightarrow\frac{1991.1999}{1995.1995}< 1\)
Vậy \(\frac{1991.1999}{1995.1995}< 1.\)
\(\frac{18}{75}=\frac{6}{25}\)
\(\frac{28}{112}=\frac{1}{4}=\frac{6}{24}\)
Vì 25>24 nên \(\frac{6}{25}< \frac{6}{24}\Leftrightarrow\frac{18}{75}>\frac{28}{112}\)
\(\frac{18}{75}=\frac{6}{25}\)
\(\frac{28}{112}=\frac{1}{4}\)
MÀ : \(\frac{1}{4}=\frac{6}{24}>\frac{6}{25}\)
\(\Rightarrow\frac{18}{75}< \frac{28}{112}\)