Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2y^3-\frac{x}{4}-4y^6\)
đây là pt bậc 2 của y^3 , ta đặt y^3=z ta được
\(-\left(4z^2+\frac{2.2xz}{2}+\frac{x^2}{4}\right)+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left(2z+\frac{x}{2}\right)^2+\left(\frac{x^2}{4}-\frac{x}{4}\right)\)
\(-\left\{\left(2x+\frac{x}{2}\right)^2-\left(\frac{x^2}{4}-\frac{x}{4}\right)\right\}\)
\(-\left\{\left(2x+\frac{x}{2}+\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\left(2x+\frac{x}{2}-\sqrt{\frac{x^2}{4}-\frac{x}{4}}\right)\right\}\)
\(x\left(x+y\right)-6x-6y\)
\(=x\left(x+y\right)-6\left(x+y\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
a) 4xn+2 + 8xn = 4xn( x2 + 2 )
b) ( 4x - 8 )( x2 + 6 ) - ( x - 2 )( x + 7 ) - 10 + 5x
= 4( x - 2 )( x2 + 6 ) - ( x - 2 )( x + 7 ) + 5( x - 2 )
= ( x - 2 )[ 4( x2 + 6 ) - ( x + 7 ) + 5 ]
= ( x - 2 )( 4x2 + 24 - x - 7 + 5 )
= ( x - 2 )( 4x2 - x + 22)
\(3x^2\left(x-2\right)+6x\left(2-y\right)\)(1)
Nhân tử chung: \(3x\)
\(\Rightarrow\left(1\right)=3x\left[x\left(x-2\right)+2\left(2-y\right)\right]\)
\(=3x\left(x^2-2x+4-2y\right)\)
Ta có : (x+2)(x+4)(x+6)(x+8) + 16
=[(x+2).(x+8)].[(x+4)(x+6)]+16
=(x2+10x+16).(x2+10x+24)+16 (1)
Đặt x^2+10x+16=a thì (1) trở thành:
a.(a+8)+16=a2+8a+16=(a+4)2=(x^2+10x+20)2
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
đặt x^2+x = y
=> y^2 - 2y - 15
= y^2 - 2y + 1 - 16
= ( y - 1 )^2 - 16
= ( y - 1 )^2 - 4^2
= ( y - 1 - 4 ) x ( y-1+4)
=(y -5) (y+3)
= (x^2 +x-5) (x^2+x+3)
\(=\left(x^2+6x\right)\left(x^2+6x+8\right)-9\)
\(=\left(x^2+6x\right)^2+8\left(x^2+6x\right)-9\)
\(=\left(x^2+6x+9\right)\left(x^2+6x-1\right)\)
\(=\left(x+3\right)^2\cdot\left(x^2+6x-1\right)\)