K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2015

thì áp dụng ở trên cái trong ngoặc là: \(\left(a^2+b^2+c^2-ab-bc-ac\right)\)

thay a=x-y, b= y-z, c=z-x vào là đc thôi. căn bản bạn k cần quan tâm bởi cái đằng trước là 0 r :)))

hiểu thì cho đúng đi nhé ;)

12 tháng 7 2018

Các bạn chỉ cần giải bài 2 thôi nhé! Bài 1 mình làm đc rồi!

5 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

9 tháng 7 2015

huj sáng cũng làm 1 bài cho bạn bấy giờ nghĩ lại làm chi cho tốn thời gian

9 tháng 7 2015

a/ x^3-3x^2-4x+12

=x2(x-3)-4(x-3)

=(x-3)(x2-4)

=(x-3)(x-2)(x+2)

b/ x^4-5x^2+4

=x4-4x2+4-x2

=(x2-2)2-x2

=(x2-x-2)(x2+x-2)

=(x2-x-2)(x2-x+2x-2)

=(x2-x-2)[x(x-1)+2(x-1)]

=(x2-x-2)(x-1)(x+2)

 

5 tháng 9 2018

a) \(a^3+b^3+c^3-3abc\)

\(=\left(a^3+3a^2b+3ab^2+b^3\right)+c^3-3a^2b-3ab^2-3abc\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2-ab+b^2-ac-bc+c^2\right)\)

5 tháng 9 2018

b) \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left(x^2-2xy+y^2-xy+xz+y^2-yz+y^2-2yz+z^2\right)+\left(z-x\right)^3\)

\(=\left(x-z\right)\left(x^2-3xy+2y^2+xz-3yz+z^2\right)-\left(x-z\right)^3\)

\(=\left(x-z\right)\left(x^2-3xy+2y^2+xz-3yz+z^2-x^2+2xz-z^2\right)\)

\(=\left(x-z\right)\left(-3xy+2y^2+3xz-3yz\right)\)

19 tháng 12 2015

Tick cho mình sau mình giải chi tiết cho