Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2017 lẻ, 10 chẵn nên(x+y)(y+z)(z+x) lẻ
=> x+y; y+z; z+x cùng lẻ (1)
=> (x+y)-(y+z) chẵn; (y+z)-(z+x) chẵn
=>x-z chẵn; y-x chẵn
=>x;y;z cùng tính chẵn lẻ
=>x+y; y+z; z+x cùng chẵn, mâu thuẫn với (1)
Vậy không tìm được x;y;z thỏa mãn đề bài
\(xy=x+y+1\)
\(\Rightarrow xy-x-y=1\)
\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1+1\)
\(\Rightarrow\left(x-1\right)\left(y-1\right)=2\)
Vì x;y thuộc Z \(\Rightarrow\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Xét bảng
x-1 | 1 | -1 | 2 | -2 |
y-1 | 2 | -2 | 1 | -1 |
x | 2 | 0 | 3 | -1 |
y | 3 | -2 | 2 | 0 |
Vậy...........................................
\(1,\left|x+2\right|-12=-1\)
\(\Rightarrow\left|x+2\right|=11\)
\(\Rightarrow\orbr{\begin{cases}x+2=11\\x+2=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=9\\x=-13\end{cases}}\)
\(2,135-\left|9-x\right|=35\)
\(\Rightarrow\left|9-x\right|=100\)
\(\Rightarrow\orbr{\begin{cases}9-x=100\\9-x=-100\end{cases}\Rightarrow\orbr{\begin{cases}x=-91\\x=109\end{cases}}}\)
\(3,xy+2x+2y=-16\)
\(\Rightarrow x\left(y+2\right)+2y+4=-16+4\)
\(\Rightarrow x\left(y+2\right)+2\left(y+2\right)=-12\)
\(\Rightarrow\left(x+2\right)\left(y+2\right)=-12\)
xét bảng :
x+2 | -1 | 1 | -2 | 2 | -3 | 3 | -4 | 4 | -6 | 6 | -12 | 12 |
y+2 | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
x | -3 | -1 | -4 | 0 | -5 | 1 | -6 | 2 | -8 | 4 | -14 | 10 |
y | -14 | 10 | -8 | 4 | -6 | 2 | -5 | 1 | -5 | 0 | -3 | -1 |
\(13x=13\Leftrightarrow x=1\)
\(\left(x-1\right)\left(y+3\right)=-5\)
\(TH1\hept{\begin{cases}x-1=-5\\y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-2\end{cases}}}\)
\(TH2\hept{\begin{cases}x-1=5\\y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=2\end{cases}}}\)
\(2n+1⋮n-3\)
\(2n-6+7⋮n-3\)
\(7⋮n-3\)
\(\Rightarrow n-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Tự lập bảng ....
Tương tự bài tiếp theo nhen
Mấy bài kia chắc c lm đc r nhỉ
2. a) \(2n+1⋮n-3\)
\(\Leftrightarrow2.\left(n-3\right)+7⋮n-3\)
\(\Leftrightarrow7⋮n-3\)
\(\Leftrightarrow n-3\in\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow n\in\left\{-4;2;4;10\right\}\) ( thỏa mãn n nguyên )
Vậy \(n\in\left\{-4;2;4;10\right\}\)
b) \(3n+8⋮n+1\)
\(\Leftrightarrow3.\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\) ( thỏa mãn n nguyên )
Vậy \(n\in\left\{-6;-2;0;4\right\}\)
~~~~~~~~~~ Học tốt nha ~~~~~~~~~~~~~~~~~
\(\left(x-3\right).y=7\Rightarrow\text{Ta có bảng sau:}\)
\(x-3\) | \(-7\) | \(-1\) | \(1\) | \(7\) |
\(x\) | \(-4\) | \(2\) | \(4\) | \(10\) |
\(y\) | \(-1\) | \(-7\) | \(7\) | \(1\) |
Vậy các cặp (x; y) thỏa là: (-4; -1); (2; -7); (4; 7); (10 ; 1).
x+y+xy=2
<=> x(y+1)+y=2
<=> x(y+1)+y+1=2+1
<=> (y+1)(x+1)=3=1.3=3.1=(-1).(-3)=(-3).(-1)
TH1: y+1=1;x+1=3=> y=0;x=2
TH2: y+1=3;x+1=1=> y=2;x=0
TH3: y+1=-1;x+1=-3=> y=-2;x=-4
TH4: y+1=-3;x+1=-1=> y=-4;x=-2
Vậy có các cặp (x, y) hoán vị là (2,0); (-4,-2).
xy+x-y=5
xy+x-y-1=5-1
x(y+1)-(y+1)=4
(y+1)(x-1)=4
=> (y+1)(x-1) thuôc Ư(4)
đến đây kẻ bảng giải ra
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)