Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
a) Để \(C=\frac{3x+2}{x+1}=\frac{3x+3-1}{x+1}=\frac{3.\left(x+1\right)-1}{x+1}=3-\frac{1}{x+1}\)nguyên
=> 1/x+1 nguyên
=> 1 chia hết cho x + 1
=>...
bn tự làm tiếp nha
b) Để \(D=\frac{2x-1}{x-1}=\frac{2x-2+1}{x-1}=\frac{2.\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)nguyên
=>...
\(A=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để A lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
\(\Leftrightarrow12-x\) nhỏ nhất
Với \(x>12\Rightarrow12-x< 0\Rightarrow A\) là số âm
Với \(x< 12\Rightarrow12-x>0\Rightarrow A_{max}=5\Leftrightarrow x=11\)
A = \(\frac{27-2X}{12-X}\)= \(\frac{24-2X+3}{12-X}\)= \(\frac{\left(12-X\right)\cdot2+3}{12-X}\)= 2 + \(\frac{3}{12-X}\)
Lúc này biểu thức A lớn nhất khi \(\frac{3}{12-x}\) đạt GTLN
Hay 12-x là số tự nhiên nguyên nguyên dương nhỏ nhất là 1 hay x = 11
Lúc này bt A có giá trị là 2+ \(\frac{3}{1}\)= \(2+3=5\)
Vậy bt A đạt GTLN là 5 khi x = 11
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
\(B=\frac{32-2x}{11-x}=\frac{11-x+21-x}{11-x}=1+\frac{21-x}{11-x}=1+\frac{11-x+10}{11-x}=2+\frac{10}{11-x}\)
để B lớn nhất thì \(\frac{10}{11-x}\)lớn nhất
\(\Rightarrow11-x\)nhỏ nhất(khác 0)
\(\Rightarrow x=10\)
\(\Rightarrow B=12\)tại \(x=10\)