\(\inℕ\), biết: 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

a, \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

  \(A=\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{61}-\frac{1}{66}\)

 \(A=\frac{1}{11}-\frac{1}{66}\)

\(A=\frac{5}{66}\)

b, \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)

\(B=1-\frac{1}{7}\)

\(B=\frac{6}{7}\)

_Học tốt nha_

25 tháng 8 2020

a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)

\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)

\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)

b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)

\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)

\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)

c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)

\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)

\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)

d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)

e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)

\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)

\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)

25 tháng 8 2020

a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)

\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)

\(\Rightarrow3B=\frac{303}{610}\)

\(\Rightarrow B=\frac{101}{610}\)

b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)

\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)

\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)

\(\Rightarrow C=\frac{408}{205}\)

c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)

\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)

\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)

\(\Rightarrow D=\frac{1350}{271}\)

5 tháng 4 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2018ad< 2018bc\)

\(\Leftrightarrow2018ad+cd< 2018bc+cd\)

\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)

\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)

15 tháng 4 2019

ta có a/b < c/d 

=> ad<bc 

=> 2018ad < 2018bc

=> 2018ad + cd < 2018bc + cd 

=> ( 2018 a + c ) < c ( 2018 b + d )

=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)

27 tháng 5 2019

Bài 1:

a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc

d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)

\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)

\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)

\(=\frac{4}{3}.\frac{6}{13}\)

\(=\frac{8}{13}\)

 Bài 2:

a) b) c) 

d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)

\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)

Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)

27 tháng 5 2019

Bài 1 :

a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)

\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)

\(=\frac{-27}{44}+\frac{1}{8}\)

\(=\frac{-43}{88}\)

2 tháng 2 2016

Cũng khá đơn giản nhưng mk ko biết cách trình bày sao cho ổn

2 tháng 2 2016

đơn giản mà

1 tháng 4 2019

\(a,\frac{2}{3}\cdot x-\frac{4}{7}=\frac{1}{8}\)

\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{1}{8}+\frac{4}{7}\)

\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{7}{56}+\frac{32}{56}\)

\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{39}{56}\)

\(\Leftrightarrow x=\frac{39}{56}:\frac{2}{3}=\frac{39}{56}\cdot\frac{3}{2}=\frac{39\cdot3}{56\cdot2}=\frac{117}{112}\)

\(b,\frac{2}{7}-\frac{8}{9}\cdot x=\frac{2}{3}\)

\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{2}{7}-\frac{2}{3}\)

\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{6}{21}-\frac{14}{21}\)

\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{-8}{21}\)

\(\Leftrightarrow x=\frac{-8}{21}:\frac{8}{9}=\frac{-8}{21}\cdot\frac{9}{8}=\frac{-8\cdot9}{21\cdot8}=\frac{-1\cdot3}{7\cdot1}=\frac{-3}{7}\)

Làm nốt hai bài cuối đi nhé

Study well >_<

Mk k chép lại đề bài nha

a)\(\frac{2}{3}.x=\frac{1}{8}+\frac{4}{7}\)

   \(\frac{2}{3}.x=\frac{7}{56}+\frac{32}{56}\)

    \(\frac{2}{3}.x=\frac{39}{56}\)

     \(x=\frac{39}{56}:\frac{2}{3}\)

     \(x=\frac{39}{56}.\frac{3}{2}\)

     \(x=\frac{117}{112}\)

Mk sợ sai lém!!!

    

a, \(A=\frac{n+7}{n+2}=\frac{n+2+5}{n+2}=\frac{5}{n+2}\)

\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta lập bảng 

n + 21-15-5
n-1-33-7

b, \(B=\frac{n+5}{n-2}=\frac{n-2+7}{n-2}=\frac{7}{n-2}\)

\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta lập bảng 

n - 21-17-7
n319-5

c, \(C=\frac{2n+13}{n+1}=\frac{2\left(n+1\right)+11}{n+1}=\frac{11}{n+1}\)

\(\Rightarrow n+1\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

Ta lập bảng

n + 11-111-11
n0-210-12
26 tháng 6 2020

d) Để D là số nguyên <=> \(\frac{3n+7}{2n+3}\)là số nguyên

<=> \(3n+7⋮2n+3\)

<=> 2(3n + 7) \(⋮\) 2n + 3

<=> 6n + 14 \(⋮\)2n + 3

<=> 3(2n + 3) + 5 \(⋮\)2n + 3

<=> 5 \(⋮\)2n + 3 (vì 3(2n + 3) \(⋮\)2n + 3)

<=> 2n + 3 \(\in\)Ư(5) = {1; -1; 5; -5}

Lập bảng:

2n + 3 1 -1 5 -5
  n -1 -2 1 -4

Vậy ....

2 tháng 11 2019

Ai trả lời được k đúng luôn.