Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B C A D K M Q
Xét tam giác ABC có A = 90*
=> BC2 = AB2 + AC2
=> AC2 = BC2 - AB2
=> AC2 = 102 - 62
=> AC2 = 64
\(\Rightarrow AC^2=\sqrt{64}=8\)
Vậy AC = 8cm
b) K là trung điểm của BC => DK là trung tuyến
A là trung điểm của BD => CA là trung tuyến
mà DK giao CA tại M
=> M là trọng tam tam giác BDC ( 1 )
=> CM \(=\frac{2}{3}AC\)
=> CM = \(\frac{16}{3}cm\)
c) Đề bài phải là trung tuyến AC nhá
Trong tam giác vuông trung tuyến ứng với cạnh huyền = \(\frac{1}{2}\) cạnh huyền
=> Q là trung điểm của BC
=> BQ là trung tuyến của tam giác BDC ( 2 )
Từ ( 1 ) và ( 2 ) => 3 điểm B , M , Q thẳng hàng
Bạn tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath (https://olm.vn/hoi-dap/question/1172749.html)
Trả lời:
1.a) Vì tam giác ABC cân tại A
=>B=ACD
Mà ACD=ECN(đối đỉnh)
=>B=ECN
Vì AB=AC(tam giác ABC cân tại A)
Mà AC=IC
=>AB=IC
Xét tam giác ABD và tam giác ICE có:
AB=IC(c/m trên)
B=ECN(c/m trên)
BD=CE(gt)
=>tam giác ABD=tam giác ICE(c.g.c)
2.
Xét tam giác BMD và tam giác CEN có:
BDM=CNE(=90 độ)
BD=CE(gt)
B=ECN(c/m trên)
=>tam giác BDM=tam giác CEN(g.c.g)
=>BM=CN(2 cạnh tương ứng)
~Học tốt!~
A B C D K M Q
a) b) cậu biết làm rồi nhé
c) Vì K là trung điểm cạnh BC ( gt )
\(\Rightarrow DK\)là trung tuyến cạnh BC.
Vì A là trung điểm của BD
\(\Rightarrow AC\)là trung tuyến cạnh BD
mà DK cắt AC tại M
\(\Rightarrow M\)là trọng tâm của tam giác BCD.
\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)
( BẠN TỰ THAY VÀO NHA )
d) Vì tam giác BCD cân ( cmt )
\(\Rightarrow BC=DC\left(đn\right)\)
Mà AC là trung tuyến của tam giác BCD ( cmt )
\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)
\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)
Xét tam giác BCM và tam giác DCM có:
\(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)
\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)
Xét tam giác BMK và tam giác DMQ có:
\(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\)
\(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)
Vì M là trọng tâm của tam giác BCD (cmt) (4)
mà DK là trung tuyến của tam giác BCD (cmt)
\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)
\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)
Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng
A K M I C H B N
a)
Ta có nối K với M
=> Xét t/gMCK và t/gMHC ta có:
CK=CH (gt) hay ^KCM=^MCH (gt)
MC (cạnh chung)
=>t/gMCK = t/gMCH (c.g.c)
=>MK=MH ( tương ứng)
đpcm.
b) Tiếp tục nối K và H
Gọi I là giao điểm của CM và KH
Xét t/gICK và t/gICH ta có:
CK=CH (gt) hay ^HCM=^CMK (gt)
CI (cạnh chung)
=>t/gICK=t/gICH (c.g.c)
=>^CIK=^CIH( tương ứng)
Mà ^CIK+^CIH=180o( góc kề bù)
=>^CIK=^CIH=90o
=>CI_|_HK
=>CM_|_HK
đpcm.
c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)
Vì ^KCM+^MCN=90o
=>^MCN=90o-^KCM
=>^MCN=90o-35o
=>^MCN=65o(2)
Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.
đpcm.
a) Xét \(\Delta\)ACE và \(\Delta\)AKE có :
- CÂE = KÂE ( vì AE là phân giác )
- AE : cạnh chung
- Góc ACE = góc AKE ( = 90 độ )
\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)AKE ( cạnh huyền - góc nhọn )
\(\Rightarrow\)AC = AK ( hai cạnh tương ứng ) ( đpcm )
\(\Rightarrow\)A nằm trên đường trung trực của CK ( 1 )
Ta lại có : CE = KE ( vì \(\Delta\)ACE = \(\Delta\)AKE )
\(\Rightarrow\)E nằm trên đường trung trực của CK ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AE\(\perp\)CK ( đpcm )
tự vẽ hình-câu a bạn kia làm r thì t làm câu b tiếp nha :)
b) Tam giác BEK có: góc B + góc E + góc K =180 độ
Tam giác KEA có : góc K+góc A+góc E=180 đôk
Mà góc EKA=BKE=90 độ, góc EBK=Góc KAE=30 độ
=> Góc BEK= góc KEA
Xét tam giác BEK và tam giác AEK, ta có:
EK là cạnh chung
góc EKA=BKE=90 độ
Góc BEK= góc KEA(cmt)
Vậy tam giác BEK = tam giác AEK(g-c-g)
=> AK=BK(cặp cạnh t/ứng)
BE=AE(cặp cạnh t/ứng)
c) Áp dụng định lí pytago vào tam giác vuông CEA. ta có:
EC2+CA2=AE2=> AE2-EC2=CA2=> AE2>CA2=> AE>CA
mà AE=BE(cmt) => BE>AC
câu d t chịu >: