K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B C A D K M Q

Xét tam giác ABC có A = 90*

=> BC2 = AB2 + AC2 

=> AC2 = BC2 - AB2

=> AC2 = 102 - 62

=> AC2 = 64

\(\Rightarrow AC^2=\sqrt{64}=8\)

Vậy AC = 8cm

b) K là trung điểm của BC => DK là trung tuyến 

A là trung điểm của BD => CA là trung tuyến

mà DK giao CA tại M

=> M là trọng tam tam giác BDC       ( 1 )
=> CM \(=\frac{2}{3}AC\)

=> CM = \(\frac{16}{3}cm\)

c) Đề bài phải là trung tuyến AC nhá

Trong tam giác vuông trung tuyến ứng với cạnh huyền = \(\frac{1}{2}\) cạnh huyền

=> Q là trung điểm của BC 

=> BQ là trung tuyến của tam giác BDC ( 2 )

Từ ( 1 ) và ( 2 ) => 3 điểm B , M , Q thẳng hàng

8 tháng 4 2020

Bạn tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath (https://olm.vn/hoi-dap/question/1172749.html) 

Trả lời:

1.a) Vì tam giác ABC cân tại A

=>B=ACD

Mà ACD=ECN(đối đỉnh)

=>B=ECN

Vì AB=AC(tam giác ABC cân tại A)

Mà AC=IC

=>AB=IC

Xét tam giác ABD và tam giác ICE có:

AB=IC(c/m trên)

B=ECN(c/m trên)

BD=CE(gt)

=>tam giác ABD=tam giác ICE(c.g.c)

2.

Xét tam giác BMD và tam giác CEN có:

BDM=CNE(=90 độ)

BD=CE(gt)

B=ECN(c/m trên)

=>tam giác BDM=tam giác CEN(g.c.g)

=>BM=CN(2 cạnh tương ứng)

                                              ~Học tốt!~

30 tháng 12 2018

dễ thôi

........

30 tháng 12 2018

tự vẽ hình nha

a, xét TG ADM và ABM có

 AM cạnh chung

DM = BM (gt)

DA = BA (gt)

=>TG ADM = TG ABM(c-c-c)

b, ta có DMA + BMA = 180 (KB)

DMA = BMA (2 góc tương ứng) =>DMA = BMA = 90

=> AK VGóc với DB

4 tháng 5 2019

A B C D K M Q

a) b) cậu biết làm rồi nhé

c) Vì K là trung điểm cạnh BC ( gt )

\(\Rightarrow DK\)là trung tuyến cạnh BC.

 Vì A là trung điểm của BD

\(\Rightarrow AC\)là trung tuyến cạnh BD

mà DK cắt AC tại M 

\(\Rightarrow M\)là trọng tâm của tam giác BCD.

\(\Rightarrow MC=\frac{2}{3}AC\left(tc\right)\)

( BẠN TỰ THAY VÀO NHA )

4 tháng 5 2019

d) Vì tam giác BCD cân ( cmt )

\(\Rightarrow BC=DC\left(đn\right)\)

Mà AC là  trung tuyến của tam giác BCD ( cmt )

\(\Rightarrow AC\)cũng là đường phân giác của góc BCD .( tc)

\(\Rightarrow\widehat{BCA}=\widehat{DCA}=\frac{1}{2}\widehat{BCD}\)

Xét tam giác BCM và tam giác DCM có:

    \(\hept{\begin{cases}CMchung\\BC=CD\left(cmt\right)\\\widehat{BCA}=\widehat{DCA}\left(cmt\right)\end{cases}\Rightarrow\Delta BCM=\Delta DCM\left(c-g-c\right)}\)

\(\Rightarrow\hept{\begin{cases}BM=DM\left(2canht.ung\right)\left(1\right)\\\widehat{CBM}=\widehat{CDM}\left(2goct.ung\right)\end{cases}}\)

Xét tam giác BMK và tam giác DMQ có:

   \(\hept{\begin{cases}BM=DM\left(cmt\right)\\\widehat{CDM}=\widehat{CBM}\left(cmt\right)\\\widehat{BMK}=\widehat{QMD}\left(2gocdoidinh\right)\end{cases}\Rightarrow\Delta BMK=\Delta DMQ\left(g-c-g\right)}\) 

 \(\Rightarrow MK=MQ\left(2canht.ung\right)\left(2\right)\)

Vì M là trọng tâm của tam giác BCD (cmt)  (4)

 mà DK là trung tuyến của tam giác BCD (cmt)

\(\Rightarrow DM=2.MK\left(tc\right)\left(3\right)\)

Từ (1), (2) và (3) \(\Rightarrow BM=2.MQ\)

\(\Rightarrow BQ\)là trung tuyến của tam giác BCD (5)

Từ (4) và (5) \(\Rightarrow B,M,Q\)thẳng hàng

29 tháng 2 2020

A K M I C H B N

a)

Ta có nối K với M 

=> Xét t/gMCK và t/gMHC ta có:

CK=CH (gt) hay ^KCM=^MCH (gt)

MC (cạnh chung)

=>t/gMCK = t/gMCH (c.g.c)

=>MK=MH ( tương ứng)

đpcm.

b) Tiếp tục nối K và H

Gọi I là giao điểm của CM và KH

Xét t/gICK và t/gICH ta có:

CK=CH (gt) hay ^HCM=^CMK  (gt)

CI (cạnh chung)

=>t/gICK=t/gICH (c.g.c)

=>^CIK=^CIH( tương ứng)

Mà ^CIK+^CIH=180o( góc kề bù)

=>^CIK=^CIH=90o

=>CI_|_HK 

=>CM_|_HK

đpcm.

c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)

Vì ^KCM+^MCN=90o

=>^MCN=90o-^KCM

=>^MCN=90o-35o

=>^MCN=65o(2)

Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.

đpcm.

29 tháng 2 2020

Phạm Mai Oannh , tại sao góc CMH = góc CMN =65 độ vậy bn

a) Xét \(\Delta\)ACE và \(\Delta\)AKE có :

  • CÂE = KÂE ( vì AE là phân giác )
  • AE : cạnh chung
  • Góc ACE = góc AKE ( = 90 độ )

\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)AKE ( cạnh huyền - góc nhọn )

\(\Rightarrow\)AC = AK ( hai cạnh tương ứng ) ( đpcm )

\(\Rightarrow\)A nằm trên đường trung trực của CK ( 1 )

Ta lại có : CE = KE ( vì \(\Delta\)ACE = \(\Delta\)AKE )

   \(\Rightarrow\)E nằm trên đường trung trực của CK ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)AE\(\perp\)CK ( đpcm )

3 tháng 2 2019

tự vẽ hình-câu a bạn kia làm r thì t làm câu b tiếp nha :)

b) Tam giác BEK có:  góc B + góc E + góc K =180 độ

Tam giác KEA có : góc K+góc A+góc E=180 đôk

Mà góc EKA=BKE=90 độ, góc EBK=Góc KAE=30 độ

=> Góc BEK= góc KEA

Xét tam giác BEK và tam giác AEK, ta có:

EK là cạnh chung

góc EKA=BKE=90 độ

Góc BEK= góc KEA(cmt)

Vậy tam giác BEK = tam giác AEK(g-c-g)

=> AK=BK(cặp cạnh t/ứng)

BE=AE(cặp cạnh t/ứng)

c) Áp dụng định lí pytago vào tam giác vuông CEA. ta có:

EC2+CA2=AE2=> AE2-EC2=CA2=> AE2>CA2=> AE>CA

mà AE=BE(cmt) => BE>AC

câu d t chịu >: