K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)] 
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)] 
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1) 
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1 
=> B > A

3 tháng 4 2018

Các bạn giúp mk với .Chiều nay mk thi thi rồi 

các bạn giúp mk giải có dủ lời giải và đáp số luôn nhé

10 tháng 1 2016

Nhớ có lời giải nha các bạn , lm đc mk kết bạn với !!!! (^-^)

10 tháng 1 2016

= tự làm

hoặc

= máy tính

4 tháng 4 2018

nếu có mọt phân số a/b<1 thì a/b < a+n/b+n

tương tự ta có A<(10^11-1)+10/(10^12-1)+10

                        A<10^11+10/10^12+10

                        A<10(10^11+1)/10(10^11+1)

                        A< 10(10^10+1)/10(10^10+1)

                         A< 10^11+1/10^11+1

vậy A<B

mk ko bt đúng hay sai nx

4 tháng 4 2018

Nếu có 1 phân số \(\frac{a}{b}\)< thì \(\frac{a}{b}\)\(\frac{a+n}{b+n}\)

Tương tự ta có : A < \((10^{11}-1)+11\)\((10^{12}-1)+10\)

                         A < \(\frac{10^{11}+10}{10^{12}+10}\)

                        A < \(\frac{10(10^{10}+1)}{10(10^{11}+1)}\)

                       A < \(\frac{10(10^{10}+1)}{10(10^{11}+1)}\)

                      A < \(\frac{10^{10}+1}{10^{11}+1}\)

Vậy A<B

4 tháng 3 2020

mình nhầm nhé b=1/9!

11 tháng 4 2018

Đề có sai ko bn.  Hình như A phải = 10^11 - 1 / 10^12 - 1

11 tháng 4 2018

ta có :\(A=\frac{10^{11}-1}{10^{12}-1}=\frac{1}{10}=0,1\)

          \(B=\frac{10^{10}+1}{10^{11}+1}=\frac{1}{10}=0,1\)

\(\Rightarrow A=\frac{1}{10}\)và \(B=\frac{1}{10}\)

Vậy \(A=B\)

20 tháng 7 2018

Ta chứng minh bài toán phụ:

Với a<b thì\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(c\inℕ^∗\right)\)

Ta có: \(a< b\)

\(\Rightarrow ac< bc\)

\(\Rightarrow ac+ba< bc+ba\)

\(a\left(b+c\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+c}\)

                 đpcm

Áp dụng vào bài toán ta có:

\(\frac{10^{20}+1}{10^{21}+1}< \frac{10^{20}+1+9}{10^{21}+1+9}=\frac{10^{20}+10}{10^{21}+10}=\frac{10.\left(10^{19}+1\right)}{10.\left(10^{20}+1\right)}=\frac{10^{19}+1}{10^{20}+1}\)

Vậy \(\frac{10^{19}+1}{10^{20}+1}>\frac{10^{20}+1}{10^{21}+1}\)

Tham khảo nhé~

20 tháng 7 2018

Đặt  \(A=\frac{10^{19}+1}{10^{20}+1}\)

\(\Rightarrow10A=\frac{10^{20}+10}{10^{20}+1}=\frac{10^{20}+1+9}{10^{20}+1}=1+\frac{9}{10^{20}+1}\)

\(B=\frac{10^{20}+1}{10^{21}+1}\)

\(\Rightarrow10B=\frac{10^{21}+10}{10^{21}+1}=\frac{10^{21}+1+9}{10^{21}+1}=1+\frac{9}{10^{21}+1}\)

\(\Rightarrow\frac{9}{10^{20}+1}>\frac{9}{10^{21}+1}\)

\(\Rightarrow1+\frac{9}{10^{20}+1}>1+\frac{9}{10^{21}+1}\)

\(\Rightarrow10A>10B\Rightarrow A>B\)

A=2020^10+2/2020^11+2

⇒ 2020A=2020^11+2.2020/2020^11+2

= 1+2.2020−2/2020^11+2

B=2020^11+2/2020^12+2

⇒ 2020B=2020^12+2.2020/2020^12+2

= 1+2.2020−2/2020^12+2

Vì 2020^12+2>2020^11+2

⇒ 2.2020−2/2020^11+2<2.2020−2/2020^12+2

⇒ 2020A<2020B

⇒ A<B