Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(\Rightarrow\frac{2^{12}.\left(13+65\right)}{2^{10}.104}+\frac{3^{10}.\left(11+5\right)}{3^9.2^4}\)
\(\Rightarrow\frac{2^{12}.78}{2^{10}.104}+\frac{3^{10}.2^4}{3^9.2^4}\)
\(=\frac{2^2.3}{4}+3\)
\(=3+3=6\)
b)
\(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{10}\left(4.13+4.65\right)}{2^{10}.104}+\frac{3^9\left(11.3+5.3\right)}{3^9.16}\)
\(=\frac{312}{104}+\frac{48}{16}=3+3=6\)
a) \(A=4+2^2+2^3+2^4+....+2^{20}\)
\(\Rightarrow2A=2^3+2^3+2^4+.....+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^3+2^4+....+2^{21}\right)-\left(2^2+2^3+2^4+...+2^{20}\right)\)
\(\Rightarrow A=2^3+2^{21}-\left(2^2+2^2\right)\)
\(\Rightarrow A=2^{21}\)
\(\text{Vì }2^{21}⋮2^7\Rightarrow A⋮128\)
b) \(\frac{2^{12}.13+2^{12}.65}{2^{10}.104}+\frac{3^{10}.11+3^{10}.5}{3^9.2^4}\)
\(=\frac{2^{12}\left(13+65\right)}{2^{10}.2^3.13}+\frac{3^{10}\left(11+5\right)}{3^9.2^4}\)
\(=\frac{2^{12}.78}{2^{13}.13}+\frac{3^{10}.16}{3^9.16}=\frac{6}{2}+\frac{3^{10}}{3^9}\)
\(=3+3=6\)
Bài 1:
a) b) c) sẽ có bạn giải cho em thôi vì nó dễ tính tay cũng đc
d) \(\frac{4}{2.5}+\frac{4}{5.8}+...+\frac{4}{23.26}\)
\(=\frac{4}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{23.26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{23}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\left(\frac{1}{2}-\frac{1}{26}\right)\)
\(=\frac{4}{3}.\frac{6}{13}\)
\(=\frac{8}{13}\)
Bài 2:
a) b) c)
d)\(|\frac{5}{8}x+\frac{6}{7}|-\frac{4}{7}=\frac{10}{7}\)
\(\Leftrightarrow|\frac{5}{8}x+\frac{6}{7}|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{6}{7}=2\\\frac{5}{8}x+\frac{6}{7}=-2\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{8}{7}\\\frac{5}{8}x=\frac{-20}{7}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{64}{35}\\x=\frac{-32}{7}\end{cases}}}\)
Vậy \(x\in\left\{\frac{64}{35};\frac{-32}{7}\right\}\)
Bài 1 :
a) \(\left(\frac{2}{5}-\frac{5}{8}\right):\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-9}{40}:\frac{11}{30}+\frac{1}{8}\)
\(=\frac{-27}{44}+\frac{1}{8}\)
\(=\frac{-43}{88}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{98}{99}.\frac{99}{100}\)
\(\Rightarrow A^2>\frac{1}{100}=\frac{1}{10^2}\)
Vậy \(A>\frac{1}{10}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\)
\(\Rightarrow A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{9998}{9999}\)
\(\Rightarrow A^2>\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}...\frac{9998}{9999}.\frac{9999}{10000}\)
\(\Rightarrow A^2>\frac{1}{10000}=\frac{1}{100^2}\)
\(VayA>\frac{1}{100}=B\)
Vi 10^8/10^8-3 > 1 => 10^8/10^8-3 > 10^8+2/10^8+2-3=10^8+2/10^8-1
=>10^8/10^8-3>10^8+2/10^8-1
B=3^10.11+3^10.5/3^9.2^4
= 3^10( 11+5)/3^9.16
= 3^10.16/3^9.16
= 3^10/3^9
= 3
Vậy B = 3 (1)
C = 2^10.13+2^10.65/2^8.104
= 2^10(13+65)/2^8.2^2.26
= 2^10.78/2^10.26
= 78/26
= 3
Vậy C = 3 (2)
Từ (1) v (2) suy ra B=C