Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
a) Vì \(A=2-\left|x+\frac{5}{6}\right|\le2-0=2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|x+\frac{5}{6}\right|=0\Rightarrow x=-\frac{5}{6}\)
Vậy Max(A) = 2 khi \(x=-\frac{5}{6}\)
b) Vì \(B=5-\left|\frac{2}{3}-x\right|\le5-0=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|\frac{2}{3}-x\right|=0\Rightarrow x=\frac{2}{3}\)
Vậy Max(B) = 5 khi \(x=\frac{2}{3}\)
a) ta có: m - 1 chia hết cho 2m + 1
=> 2m - 2 chia hết cho 2m + 1
2m + 1 - 3 chia hết cho 2m + 1
mà 2m + 1 chia hết cho 2m + 1
=> 3 chia hết cho 2m + 1
...
bn tự làm tiếp nha!
b) \(\left|3m-1\right|< 3\)
TH1: 3m - 1 < 3
=> 3m < 4
=> m < 4/3
TH2: -3m + 1 < 3
=> -3m < 2
=> m > -2/3
=> -2/3 < m < 4/3
=> m thuộc { 0;1}
Giả theo cách lớp 7 nha:
Đặt \(\hept{\begin{cases}\sqrt{6-x}=a\\\sqrt{x+2}=b\end{cases}}\)
\(\Rightarrow a^2+b^2=8\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow2ab\le a^2+b^2\)
\(\Leftrightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\cdot8=16\)
\(\Leftrightarrow a+b\le4\)
Dấu = xảy ra khi \(a=b=2\)
\(\Leftrightarrow x=2\)
\(ĐKXĐ:-2\le x\le6\)
Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2.\left(a+b\right)}\) với \(a,b\ge0\) ta có :
\(y=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2.\left(6-x+x+2\right)}=\sqrt{2.8}=4\)
Dấu "=" xảy ra \(\Leftrightarrow6-x=x+2\Leftrightarrow x=2\)
Vậy \(y_{min}=4\) khi \(x=2\)
\(A=\frac{27-2x}{12-x}=\frac{2\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để A lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
\(\Leftrightarrow12-x\) nhỏ nhất
Với \(x>12\Rightarrow12-x< 0\Rightarrow A\) là số âm
Với \(x< 12\Rightarrow12-x>0\Rightarrow A_{max}=5\Leftrightarrow x=11\)
A = \(\frac{27-2X}{12-X}\)= \(\frac{24-2X+3}{12-X}\)= \(\frac{\left(12-X\right)\cdot2+3}{12-X}\)= 2 + \(\frac{3}{12-X}\)
Lúc này biểu thức A lớn nhất khi \(\frac{3}{12-x}\) đạt GTLN
Hay 12-x là số tự nhiên nguyên nguyên dương nhỏ nhất là 1 hay x = 11
Lúc này bt A có giá trị là 2+ \(\frac{3}{1}\)= \(2+3=5\)
Vậy bt A đạt GTLN là 5 khi x = 11
làm nốt câu này rồi đi ngủ
\(Q=\frac{|x-2020|+|x-2019|+2019+1}{|x-2019|+|x-2020|+2019}=1+\frac{1}{|x-2020|+|x-2019|+2019}\)
Để Q đạt GTLN thì \(|x-2020|+|x-2019|+2019\)đạt GTNN
Ta có : \(|x-2020|+|x-2019|+2019=|x-2020|+|2019-x|+2019\)
Sử dụng BĐT /a/ + /b/ >= /a+b/ ta được :
\(|x-2020|+|2019-x|+2019\ge|x-2020+2019-x|+2019=2020\)
Dấu = xảy ra khi và chỉ khi \(\left(x-2020\right)\left(2019-x\right)\ge0\Leftrightarrow2020\ge x\ge2019\)
Khi đó : \(Q=1+\frac{1}{|x-2020|+|x-2019|+2019}\le1+\frac{1}{2020}=\frac{2021}{2020}\)
Dấu = xảy ra khi và chỉ khi \(2019\le x\le2020\)
\(B=\frac{32-2x}{11-x}=\frac{11-x+21-x}{11-x}=1+\frac{21-x}{11-x}=1+\frac{11-x+10}{11-x}=2+\frac{10}{11-x}\)
để B lớn nhất thì \(\frac{10}{11-x}\)lớn nhất
\(\Rightarrow11-x\)nhỏ nhất(khác 0)
\(\Rightarrow x=10\)
\(\Rightarrow B=12\)tại \(x=10\)
suy ra: 3.(2x-3y)=2.(x+2y)
6x-9y=2x+4y
6x-9y-2x-4y=0
4x-13y=0
4x=13y
x:y=13:4
TÍCH ĐÚNG CHO MÌNH NHA!!!