K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2018

Áp dụng bất đẳng thức GTTĐ \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|\)

Thay x+y=5 vào A ta có :

\(A\ge\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy Amin = 4 <=> x >=-1 và y >=2

23 tháng 10 2018

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|4\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\y-2\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge-1\\y\ge2\end{cases}}}\)

Vậy:\(A_{Min}=4\Leftrightarrow\hept{\begin{cases}x\ge-1\\y\ge2\end{cases}}\)

25 tháng 3 2020

a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10

Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)

hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)

27 tháng 3 2020
Cam on ban
22 tháng 10 2018

bùi thị ánh phương cute bạn tham khảo bài làm tương tự này nhé : Câu hỏi của bùi thị ánh phương cute - Toán lớp 7 - Học toán với OnlineMath

22 tháng 10 2018

anh ctv trả lời đúng r mà sao ko k lun cho nhanh

nhá

học tốt

22 tháng 2 2019

\(A=2x^2+2xy+y^2-2x+2y+1\)

\(A=x^2+2xy+y^2+2x+2y+x^2-4x+4+1-4\)

\(A=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-4\)

\(A=\left(x+y+1\right)^2+\left(x-2\right)^2-4\)

Vì \(\left(x+y+1\right)^2\ge0\forall x;y\)và \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy....

6 tháng 3 2019

ai nhanh mik cho 3 k nè

22 tháng 2 2019

Giả theo cách lớp 7 nha:

Đặt \(\hept{\begin{cases}\sqrt{6-x}=a\\\sqrt{x+2}=b\end{cases}}\)

\(\Rightarrow a^2+b^2=8\)

Ta có:

\(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow2ab\le a^2+b^2\)

\(\Leftrightarrow a^2+b^2+2ab\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)=2\cdot8=16\)

\(\Leftrightarrow a+b\le4\)

Dấu = xảy ra khi \(a=b=2\)

\(\Leftrightarrow x=2\)

30 tháng 8 2020

\(ĐKXĐ:-2\le x\le6\)

Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\le\sqrt{2.\left(a+b\right)}\) với \(a,b\ge0\) ta có :

\(y=\sqrt{6-x}+\sqrt{x+2}\le\sqrt{2.\left(6-x+x+2\right)}=\sqrt{2.8}=4\)

Dấu "=" xảy ra \(\Leftrightarrow6-x=x+2\Leftrightarrow x=2\)

Vậy \(y_{min}=4\) khi \(x=2\)