K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Áp dụng BĐT AM-GM ta có:

\(x+y+z+xy+yz+zx\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2zx+3}{2}=\frac{\left(x+y+z\right)^2+3}{2}\)\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\Leftrightarrow\left(x+y+z\right)^2\ge9\Leftrightarrow x+y+z\ge3\)

Áp dụng BĐT Bunhiacopxki ta có:

\(3A=\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3^2=9\)

\(\Leftrightarrow A\ge3\)

Dấu " = " xảy ra <=> \(x=y=z=1\)

Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)

20 tháng 4 2019

Từ chỗ x + y + z >= 3 còn có cách khác rất quen thuộc ạ!

Ta có: \(A=\left(x^2+1\right)+\left(y^2+1\right)+\left(z^2+1\right)-3\)

\(\ge2\left(x+y+z\right)-3\ge6-3=3\)

Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)

10 tháng 6 2020

1) \(21x^2+21y^2+z^2\)

\(=18\left(x^2+y^2\right)+z^2+3\left(x^2+y^2\right)\)

\(\ge9\left(x+y\right)^2+z^2+3.2xy\)

\(\ge2.3\left(x+y\right).z+6xy\)

\(=6\left(xy+yz+zx\right)=6.13=78\)

Dấu "=" xảy ra <=> x = y ; 3(x+y) = z; xy + yz + zx= 13 <=> x = y = 1; z= 6

10 tháng 6 2020

2) \(x+y+z=3xyz\)

<=> \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=3\)

Đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)=> ab + bc + ca = 3

Ta cần chứng minh: \(3a^2+b^2+3c^2\ge6\)

Ta có: \(3a^2+b^2+3c^2=\left(a^2+c^2\right)+2\left(a^2+c^2\right)+b^2\)

\(\ge2ac+\left(a+c\right)^2+b^2\ge2ac+2\left(a+c\right).b=2\left(ac+ab+bc\right)=6\)

Vậy: \(\frac{3}{x^2}+\frac{1}{y^2}+\frac{3}{z^2}\ge6\)

Dấu "=" xảy ra <=> a = c = \(\sqrt{\frac{3}{5}}\)\(b=2\sqrt{\frac{3}{5}}\)

khi đó: \(x=z=\sqrt{\frac{5}{3}};y=\sqrt{\frac{5}{3}}\)

27 tháng 9 2019

\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)

\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)

\(=\left(3x+2y+3\right)\left(-x-4y+5\right)\)

27 tháng 9 2019

\(49\left(y-4\right)^2-9y^2-36y-36\)

\(=49\left(y-4\right)^2-\left(9y^2+36y+36\right)\)

\(=49\left(y-4\right)^2-\left(3y+6\right)^2\)

\(=[7\left(y-4\right)]^2-\left(3y+6\right)^2\)

\(=\left(7y-28\right)^2-\left(3y+6\right)^2\)

\(=\left(7y-28+3y+6\right)\left(7y-28-3y-6\right)\)

\(=\left(10y-22\right)\left(4y-34\right)\)

29 tháng 7 2020

Đặt \(A=x^2+y^2+z^2+xy+yz+zx\)

Áp dụng BĐT Bunyakovsky dạng phân thức, ta được: \(2A=x^2+y^2+z^2+\left(x+y+z\right)^2\ge\frac{\left(x+y+z\right)^2}{3}+\left(x+y+z\right)^2\)

\(=\frac{4\left(x+y+z\right)^2}{3}=12\Rightarrow A\ge6\)

Đẳng thức xảy ra khi x = y = z = 1