Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E
a) Xét \(\Delta\)ABD và \(\Delta\)CED có:
^BAD = ^ECD ( = 1/2 ^BCx )
^ADB = ^CDE ( đối đỉnh)
=> \(\Delta\)ABD ~ \(\Delta\)CED ( g-g)
b) Xét \(\Delta\)EAC và \(\Delta\)ECD có:
^EAC = ^ECD ( = 1/2 ^BCx )
^AEC = ^CED ( ^E chung )
=> \(\Delta\)EAC ~ \(\Delta\)ECD ( g-g)
=> \(\frac{AE}{AC}=\frac{EC}{CD}\)(1)
Mặt khác từ (a) => \(\frac{AB}{AD}=\frac{EC}{CD}\)(2)
Từ (1) ; (2) => \(\frac{AE}{AC}=\frac{AB}{AD}\)=> AB. AC = AE.AD < AE. AE (3)
=> AB. AC < \(AE^2\)
c) Từ (3) ta có: AB. AC = AE.AD
Ta lại có: \(4AI^2-DE^2=\left(2AI-DE\right)\left(2AI+DE\right)\)
Vì I là trung điểm DE nên DI = IE = 1/2 DE => DE = 2 DI = 2IE
+) 2AI - DE = 2 ( AD + DI ) - 2 DI = 2AD + 2 DI - 2 DI = 2 AD
+) 2AI + DE = 2 ( AD + DI ) + DE = 2 AD + 2 DI + DE = 2 AD + DE + DE = 2 AD + 2 DE = 2 ( AD + DE ) = 2 AE
=> \(4AI^2-DE^2=2AD.2DE=4AD.DE=4AB.AC\)
Vậy...
d) Xét \(\Delta\)BDE và \(\Delta\)ADC có:
\(\frac{BD}{ED}=\frac{AD}{CD}\)( suy ra từ (a) )
^BDE = ^ADC ( đối đỉnh)
=> \(\Delta\)BDE ~ \(\Delta\)ADC ( g-c)
=> ^EBD = ^CAD = DCE
=> \(\Delta\)BEC cân
=> EB = EC
=> Trung trực BC qua E
Câu hỏi của Dương Văn Chiến - Toán lớp 8 - Học toán với OnlineMath
A B C D E
a, Xét : \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{BAD}=\widehat{BED}\left(=90^o\right)\)
\(BD\)chung
\(\widehat{ABD}=\widehat{EBD}\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b, Theo câu a, ta có :
\(\Delta ABD=\Delta EBD\left(cmt\right)\)
\(\Rightarrow AB=EB\)( cặp cạnh tương ứng )
\(\Rightarrow\Delta ABE\)là tam giác cân
Lại có : \(\widehat{B}=60^o\)
\(\Rightarrow\Delta ABE\)là tam giác đều
c, Do : \(\Delta ABE\)đều
\(\Rightarrow AB=BE=5\left(cm\right)\)
Do : \(BD\)là phân giác của \(\widehat{B}\)
\(\Rightarrow\widehat{ABD}=\widehat{EBD}=\frac{1}{2}60^o=30^o\)
Xét : \(\Delta BDE\)có : \(\widehat{BDE}=180^o-90^o-30^o=60^o\)
Lại có : \(\widehat{BDE}=\widehat{BDA}\left(\Delta ABD=\Delta EBD\right)\)
\(\Rightarrow\widehat{BDA}=60^o\Rightarrow\widehat{EDC}=180^o-60^o-60^o=60^o\)
Xét : \(\Delta BDE\)và \(\Delta CDE\)có :
\(\widehat{BED}=\widehat{CED}\left(=90^o\right)\)
\(DE\)chung
\(\widehat{BDE}=\widehat{CDE}\left(=60^o\right)\)
\(\Rightarrow\Delta BDE=\Delta CDE\left(g.c.g\right)\)
\(\Rightarrow BE=CE=5\left(cm\right)\)
\(\Rightarrow BC=BE+EC=5+5=10\left(cm\right)\)
Vậy : \(BC=10\left(cm\right)\)
Bài 1:
C A B E H D
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)
Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)
\(\widehat{CAB}=\widehat{ANB}=90^o\)
\(\Rightarrow\Delta ABC~\Delta AHB\)
b) \(\frac{AB}{NB}=\frac{AC}{NA}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)
Chứng minh tương tự:
\(\Delta ABC~\Delta AHB\)
\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)
Xét tam giác vuông.
Áp dụng định lý Pi-ta-go, ta có:
\(DB^2=AB^2+AD^2=6^2+8^2=100\)
\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)
Bài 2:
1 1 2 2 A B C D
a) Xét \(\Delta OAV\text{ và }\Delta OCD\)
Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)
\(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta OAB~\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)
\(AC^2-DC^2=AD^2\left(1\right)\)
\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)
\(BD^2-AB^2=AD^2\)
\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)