K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DIa/ Chứng minh :∆ DEI = ∆DFIb/ Các góc DIE và góc DIF là những góc gì ?c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.Bài 2Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB.Từ C kẻ CE ⊥ AD.Chứng minh :a)Tam giác ABD là tam giác đều .b)AH = CE.c)EH // AC .Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm....
Đọc tiếp

Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI

a/ Chứng minh :∆ DEI = ∆DFI

b/ Các góc DIE và góc DIF là những góc gì ?

c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.

Bài 2

Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = H
B.Từ C kẻ CE ⊥ A
D.Chứng minh :

a)Tam giác ABD là tam giác đều .

b)AH = CE.

c)EH // AC .

Bài 3  Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC

a. Chứng minh tam giác ABC vuông

b) Chứng minh ΔBCD cân

c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC

Bài 4:

Cho ABC cân tại A,  vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.

a) Chứng minh BH =HC.

b) Tính độ dài BH, AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh rằng A, G, H thẳng hàng.

d) Chứng minh ∠ABG = ∠ACG

Bài 5(3,5 điểm)

Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.

a) Tính AB.

b) Chứng minh BC = BE.

c) Tia BC cắt tia EK tại M. So sánh KM và KE.

d) Chứng minh CE // MA

Bài 6:

Cho  ΔABC  vuông  tại  A, đường  phân  giác  BE. Kẻ  EH  vuông  góc  với  BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:

a) ΔABE = ΔHBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC.

d) AE < EC.

Bài 7

Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.

a. Chứng minh: BH = HC.

b. Tính độ dài đoạn AH.

c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = G
D.Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF

d) Chứng minh: DB + DG > AB.

Bài 8

 Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.

a) Vẽ hình và ghi GT – KL ?

b) KH = AC

c) BE là tia phân giác của góc ABC ?

d) AE < EC ?

Bài 9

Cho  ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :

a) ΔBNC =   ΔCMB

b) ΔBKC cân tại K

c) MN // BC

Bài 10  Cho ΔABC cân tại A. Gọi M là trung điểm của A
C.Trên tia đối của tia MB lấy điểm D sao cho DM = BM

a. Chứng minh ΔBMC = ΔDMA. Suy ra AD // BC.

b. Chứng minh ΔACD là tam giác cân.

c. Trên tia đối của tia CA lấy điểm E sao cho CA = CE. Chứng minh DC đi qua trung điểm I của BE.

Bài 11  Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 10cm, BC = 12cm.

a) Chứng minh tam giác ABH bằng tam giác ACH.

b) Tính độ dài đoạn thẳng AH.

c) Gọi G là trọng tâm của tam giác AB
C.Chứng minh ba điểm A, G, H thẳng hàng.

0

Bn tham khảo ở đây nhé:

https://olm.vn/hoi-dap/question/22169.html

hok tốt!!

25 tháng 3 2020

A B C H D K

a) Xét \(\Delta AHB\)và \(\Delta DBH\)có: \(\hept{\begin{cases}AH=BD\left(gt\right)\\\widehat{BHA}=\widehat{BDH}=90^0\\ChungAH\end{cases}\Rightarrow\Delta AHB=\Delta DBH\left(ch-gn\right)}\)

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

29 tháng 12 2018

Vẽ hình, viết GT, KL và trình bày cách làm giúp mk nhé!!!

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0
27 tháng 2 2020

a) Xét \(\Delta\)ADI và \(\Delta\)AHI có:

     AD = AH (gt)

     DI = HI (gt)

    AI: cạnh chung

Do đó \(\Delta\)ADI = \(\Delta\)AHI (c.c.c)

b) Xét \(\Delta\)AHC vuông tại D và \(\Delta\)ABC vuông tại A có ^C chung nên ^HAC = ^B

\(\Delta\)ABC vuông tại A có ^C = 300 nên ^B = 600

Vậy ^HAC = 600

\(\Delta\)AHD có ^HAC = 600 và AH = AD nên \(\Delta\)AHD đều (đpcm)

c)  \(\Delta\)ADI = \(\Delta\)AHI (cmt) suy ra ^DAI = ^HAI (hai góc tương ứng)

Xét \(\Delta\)ADK và \(\Delta\)AHK có:

     AD = AH (gt)

     ^DAI = ^HAI (cmt)

    AK: cạnh chung

Do đó  \(\Delta\)ADK = \(\Delta\)AHK (c.g.c)

=> ^ADK = ^AHK = 900 (hai góc tương ứng)

Kết hợp với AB vuông góc AC suy ra AB//KD (đpcm)

d) Chứng minh được: \(\Delta\)AHB = \(\Delta\)EHK (c.g.c)

=> ^HAB = ^HEK => KE // AB

Khi đó qua K có hai đường thẳng KD, KE song song với AB (trái với tiên đề Ơ - cơ - lít)

Vậy KD trùng KE hay D,K,E thẳng hàng (đpcm)

27 tháng 1 2016

a1, Xét tam giác AMB và tam giác AMC có :

AM chung
B=C(tam giác ABC cân )

AB=AC9tam giác ABC cân)

Do đó tam giác AMB=tam giác AMC(c.g.c)

a2, Vì tam giác AMB=tam giác AMC( cmt)

=>Bam=Cam ( 2 góc tương ứng)

=>AM là tia p/g góc A

Mình ms làm xong câu a thôi đợi mình nghĩ nót câu kia đã. bạn tick nha mình đảm bảo đúng

27 tháng 1 2016

vẽ hình giúp