Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)
pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)
Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.
Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)
Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\
Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)
Sửa đề (d) y=2(m-1)x+m^2+2m
a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)
Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)
=>\(3=2\left(m-1\right).1+m^2+2m\)
<=>\(m^2+2m+2m-2-3=0\)
<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)
b, Phương trình hoành độ giao điểm của (P) và (d) :
\(x^2=2\left(m-1\right)x+m^2+2m\)
<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)
Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B
c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)
\(x_1^2+x_2^2+6x_1x_2>2017\)
<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)
<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)
<=>\(4m^2-8m+4-4m^2-8m-2017>0\)
<=>\(-16m-2013>0\)
<=>\(m< \frac{-2013}{16}\)
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)
câu a bạn thay x=-1 ,y= 3 vào (d) nha
câu b)
Xét pt hoành độ giao điểm :
\(2x-a+1=\frac{1}{2}x^2\Rightarrow x^2-4x+2a-2=0\)
Bạn tự xét delta để tìm điều kiện nha
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=4\\x_1\cdot x_2=2a-2\end{cases}}\)
\(x_1x_2\left(y_1+y_2\right)+48=0\Rightarrow\frac{1}{2}x_1x_2\left(x_1^2+x_2^2\right)+48=0\)
\(\Rightarrow\frac{1}{2}x_1x_2\left(x_1+x_2\right)^2-2\cdot\frac{1}{2}x_1^2x_2^2+48=0\)
\(\Rightarrow\frac{1}{2}\left(2a-2\right)\cdot4^2-\left(2a-2\right)^2+48=0\)
\(\Rightarrow-4a^2+24a+28=0\)
\(\Rightarrow\orbr{\begin{cases}a=7\\a=-1\end{cases}}\)
Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-m+1\)\(\Leftrightarrow x^2-mx+m-1=0\)
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=\left(-m\right)^2-4.1\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2>0\)\(\Leftrightarrow m-2\ne0\)\(\Leftrightarrow m\ne2\)
Khi đó \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=m-1\end{cases}}\)(hệ thức Vi-ét)
Độ dài cạnh huyền của tam giác vuông có 2 cgv là \(x_1,x_2\)là \(\sqrt{x_1^2+x_2^2}=\sqrt{\left(x_1+x_2\right)^2-2x_1x_2}=\sqrt{m^2-2\left(m-1\right)}=\sqrt{m^2-2m+2}\)
Ta có \(x_1x_2=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)hệ thức lượng trong tam giác vuông.
\(\Leftrightarrow m-1=\frac{1}{\sqrt{5}}\sqrt{m^2-2m+2}\)\(\Leftrightarrow\frac{m-1}{\sqrt{m^2-2m+2}}=\frac{1}{\sqrt{5}}\)\(\Leftrightarrow\sqrt{\frac{m^2-2m+1}{m^2-2m+2}}=\sqrt{\frac{1}{5}}\)\(\Leftrightarrow\frac{m^2-2m+1}{m^2-2m+2}=\frac{1}{5}\)\(\Leftrightarrow5m^2-10m+5=m^2-2m+2\)\(\Leftrightarrow4m^2-8m+3=0\)
\(\Delta_1=\left(-8\right)^2-4.4.3=16>0\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{-\left(-8\right)+\sqrt{16}}{2.4}=\frac{3}{2}\\m_2=\frac{-\left(-8\right)-\sqrt{16}}{2.4}=\frac{1}{2}\end{cases}}\)
Vậy để [...] thì \(\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{1}{2}\end{cases}}\)
a) Để (d) song song với (d') thì \(\hept{\begin{cases}2=2m^2\\m^2+1\ne m^2+m\end{cases}\Leftrightarrow\hept{\begin{cases}m=\pm1\\m\ne1\end{cases}\ne}m=-1}\)
b) Phương trình hoành độ giao điểm giữa (P) và (d) là:
\(x^2=2x+m^2+1\)
\(\Leftrightarrow x^2-2x-\left(m^2+1\right)=0\)
\(\Delta'=1+\left(m^2+1\right)=m^2+2>0\)
=> Phương trình luôn có 2 nghiệm phân biệt
=> (d) luôn cắt (P) tại 2 điểm phân biệt A và B (đpcm)
c) Ta có:
\(x_A^2+x_B^2=\left(x_A+x_B\right)^2-2x_Ax_B=14\)(1)
Theo ta-let ta có:
\(\hept{\begin{cases}x_A+x_B=2\\x_A.x_B=-m^2-1\end{cases}}\)
Phương trình (1) trở thành:
\(2^2-2.\left(-m^2-1\right)=14\)
\(\Rightarrow m=\pm2\)
Hoành độ giao điểm (P) và (d) là nghiệm của phương trình
\(x^2=-2ax-4a\)
\(\Leftrightarrow x^2+2ax+4a=0\)
Để (d) cắt (P) tại 2 điểm phân biệt thì pt trên có 2 nghiệm phân biệt
Tức là \(\Delta'>0\)\(\Leftrightarrow a^2-4a>0\Leftrightarrow\orbr{\begin{cases}a< 0\\a>4\end{cases}}\)
Theo ht VI-ét \(\hept{\begin{cases}x_1+x_2=-2a\\x_1x_2=4a\end{cases}}\)
Ta có \(\left|x_1\right|+\left|x_2\right|=3\)
\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=9\)
\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+2\left|x_1x_2\right|-2x_1x_2=9\)
\(\Leftrightarrow4a^2+8\left|a\right|-8a=9\)
*Nếu a < 0 thì \(4a^2-8a-8a=9\)
\(\Leftrightarrow4a^2-16a-9=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=\frac{9}{2}\left(L\right)\\a=\frac{-1}{2}\left(tm\right)\end{cases}}\)
*Nếu a > 4 thì \(4a^2+8a-8a=9\)
\(\Leftrightarrow a^2=\frac{9}{4}\)
\(\Leftrightarrow a=\pm\frac{3}{2}\)(Loại)
Vậy \(a=-\frac{1}{2}\)
a) Thay A(1; -9) vào (d), ta có:
-9 = 3m + 1 - m2
<=> -9 - 3m - 1 + m2 = 0
<=> -10 - 3m + m2 = 0
<=> m = 5 hoặc m = -2
b) Lập phương trình hoành độ giao điểm:
x2 = 3mx + 1 - m2
<=> x2 - 3mx - 1 + m2 = 0
Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)
<=> (-3m)2 - 4.1.(-1 + m2) = 0
<=> 9m2 + 4 - 4m2 > 0
<=> 5m2 + 4 > 0\(\forall m\)
Ta có: x1 + x2 = 2x1x2
Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)
<=> 3m = 2(-1 + m2)
<=> 3m = -2 + m2
<=> 3m + 2 - m2 = 0
<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)