K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2019

Hoành độ giao điểm (P) và (d) là nghiệm của phương trình

\(x^2=-2ax-4a\)

\(\Leftrightarrow x^2+2ax+4a=0\)

Để (d) cắt (P) tại 2 điểm phân biệt thì pt trên có 2 nghiệm phân biệt 

Tức là \(\Delta'>0\)\(\Leftrightarrow a^2-4a>0\Leftrightarrow\orbr{\begin{cases}a< 0\\a>4\end{cases}}\)

Theo ht VI-ét \(\hept{\begin{cases}x_1+x_2=-2a\\x_1x_2=4a\end{cases}}\)

Ta có \(\left|x_1\right|+\left|x_2\right|=3\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)^2=9\)

\(\Leftrightarrow x_1^2+2\left|x_1x_2\right|+x_2^2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+2\left|x_1x_2\right|-2x_1x_2=9\)

\(\Leftrightarrow4a^2+8\left|a\right|-8a=9\)

*Nếu a < 0 thì \(4a^2-8a-8a=9\)

              \(\Leftrightarrow4a^2-16a-9=0\)

                \(\Leftrightarrow\orbr{\begin{cases}a=\frac{9}{2}\left(L\right)\\a=\frac{-1}{2}\left(tm\right)\end{cases}}\)

*Nếu a > 4 thì \(4a^2+8a-8a=9\)

              \(\Leftrightarrow a^2=\frac{9}{4}\)

               \(\Leftrightarrow a=\pm\frac{3}{2}\)(Loại)

Vậy  \(a=-\frac{1}{2}\)

6 tháng 4 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=mx-1\)\(\Leftrightarrow x^2-mx+1=0\)(*)

pt (*) có \(\Delta=\left(-m\right)^2-4.1.\left(-1\right)=m^2+4\)

Vì \(m^2+4>0\)nên \(\Delta>0\)hay pt (*) luôn có 2 nghiệm phân biệt, đồng nghĩa với việc (d) luôn cắt (P) tại 2 điểm phân biệt.

Áp dụng hệ thức Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=1\end{cases}}\)

Như vậy ta có \(x_2\left(x_1^2+1\right)=3\)\(\Leftrightarrow x_2x_1^2+x_2=3\)\(\Leftrightarrow x_1+x_2=3\)\(\Rightarrow m=3\)\

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thỏa mãn yêu cầu đề bài thì \(m=3\)

25 tháng 3 2022

a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4) 

b, Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-2x-m^2+2m=0\)

\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)

Để pt có 2 nghiệm pb khi m khác 1 

c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)

Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)

Thay vào ta được \(2x_1+m^2+2x_2=5m\)

\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)

\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)

31 tháng 3 2022

b) x2-2x-m2+2m=0

Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1

KL:....

c) với m≠1 thì PT có 2 nghiệm PB

C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)

tt. tính x2

C2. 

Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)

Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)

Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:

 \(P=x_1\left(2-x_1\right)=-m^2+2m\)

⇔2x1-x12=-m2+2m

⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)

⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)

Vậy với m=4 thì .....

18 tháng 2 2020

Sửa đề (d) y=2(m-1)x+m^2+2m

a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)

Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)

=>\(3=2\left(m-1\right).1+m^2+2m\)

<=>\(m^2+2m+2m-2-3=0\)

<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)

b, Phương trình hoành độ giao điểm của (P) và (d) :

\(x^2=2\left(m-1\right)x+m^2+2m\) 

<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)

\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)

Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B

c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)

\(x_1^2+x_2^2+6x_1x_2>2017\)

<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)

<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)

<=>\(4m^2-8m+4-4m^2-8m-2017>0\)

<=>\(-16m-2013>0\)

<=>\(m< \frac{-2013}{16}\)

14 tháng 3 2022

ĐK \(x_2\ge0;\)

Phương trình hoành độ giao điểm 

x2 = mx + m + 1

\(\Leftrightarrow x^2-mx-m-1=0\)

Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)

\(\Rightarrow\)Phương trình có nghiệm với mọi m

Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)

Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)

khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1

\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình 

Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)

\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm) 

10 tháng 4 2022

a) Thay A(1; -9) vào (d), ta có:

-9 = 3m + 1 - m2

<=> -9 - 3m - 1 + m2 = 0

<=> -10 - 3m + m2 = 0

<=> m = 5 hoặc m = -2

b) Lập phương trình hoành độ giao điểm:

x2 = 3mx + 1 - m2

<=> x2 - 3mx - 1 + m2 = 0

Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)

<=> (-3m)2 - 4.1.(-1 + m2) = 0

<=> 9m2 + 4 - 4m2 > 0

<=> 5m2 + 4 > 0\(\forall m\)

Ta có: x1 + x2 = 2x1x2 

Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)

<=> 3m = 2(-1 + m2)

<=> 3m = -2 + m2 

<=> 3m + 2 - m2 = 0

<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)