Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác BDC và tam giác HBC có :
\(\widehat{DBC}=\widehat{BHC}\left(=90^o\right)\)
Chung \(\widehat{BCD}\)
\(\Rightarrow\) Tam giác BDC đồng dạng với tam giác HBC ( g-g )
b) Do tam giác BDC đồng dạng với tam giác HBC
\(\Rightarrow\frac{DC}{BC}=\frac{BC}{HC}\)
\(\Leftrightarrow\frac{25}{15}=\frac{15}{HC}\)
\(\Leftrightarrow HC=9\left(cm\right)\)
Ta có : \(HD+HC=DC\)
\(\Leftrightarrow HD+9=25\)
\(\Leftrightarrow HD=16\left(cm\right)\)
a) Ta có: \(\frac{4}{6}=\frac{6}{9}\left(=\frac{2}{3}\right)\)
hay \(\frac{AB}{AD}=\frac{AD}{DC}\)
Xét \(\Delta BAD\) và \(\Delta ADC\)có:
\(\widehat{BAD}=\widehat{ADC}=90^0\)
\(\frac{AB}{AD}=\frac{AD}{DC}\)
suy ra: \(\Delta BAD~\Delta ADC\)(c.g.c)
b) \(\Delta BAD~\Delta ADC\)
\(\Rightarrow\) \(\widehat{ABD}=\widehat{DAC}\)
mà \(\widehat{ABD}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(\widehat{DAC}+\widehat{ADB}=90^0\)
\(\Rightarrow\)\(AC\)\(\perp\)\(BD\)
c) Xét \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{OAB}=\widehat{OCD}\) (slt)
\(\widehat{OBA}=\widehat{ODC}\) (slt)
suy ra: \(\Delta AOB~\Delta COD\) (g.g)
\(\Rightarrow\)\(\frac{S_{AOB}}{S_{COD}}=\left(\frac{AB}{CD}\right)^2=\left(\frac{4}{9}\right)^2=\frac{16}{81}\)
tại sao diện tích tam giác aob/diện tích tam giác cod bằng (ab/cd)^2 giải thích hộ với
câu 2d
Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)
⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA
Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA
Vậy ∠AST = 90o
...
Chúc bạn học tốt
câu 1d
+ ΔACI có BF//CI→ FC/FA=OI/AO
IΔCOI có AJ//CI (//BF)→ CI/AJ=OI/AO
→FC/FA=CI/AJ
c, Theo phần b có , tgiac AHD đồng dạng tgiac CED
=? HD/ED = AD/CD
Xét tgiac HDE và tgiac ADC, có:
góc HDE = góc ADC ( 2 góc đối đỉnh)
HD/ED = AD/ CD (cmt)
=> tg HDE đồng dậng tg ADC ( c.g.c)
d, Áp dụng định lý Pytago vào tg ABC , có:
BC^2 = AB^2 + AC^2 = 6^2 + 8^2
=>BC = 10 (cm)
Có : BA^2 = BH. BC
=> BH = 3,6 = HD
=> BD = 2BH = 7,2(cm)
=> DC = BC - BD = 2,8 (cm)
Chứng minh tgiac AHB = tg AHD (c.g.c)
=> AD = AB = 6 (cm)
theo phần b, tg CDE đồng dạng th ADH
=> Dc/DA = DE/DH
=> DE = 1,68
Áp dụng đính lý pytagp vào tg CED
=> DC^2 = EC^2 + De^2
=> EC = 2,24
=> Diện tích tam giác CED = 1/2 . DE .EC = 1,8816 (cm^2)
Bài làm
Mik nghĩ bbạn thiếu đề là AH đường cao, còn đúng hay sai thì mình không chắc vì nếu AH không là đường cao sẽ không làm được bài,
a) Xét tam giác ABC và tam giác HBA có:
\(\widehat{AHB}=\widehat{BAC}=90^0\)
\(\widehat{ABC}\)chung
=> Tam giác ABC ~ Tam giác HBA ( g - g )
b) Xét tam giác AHD và tam giác CED có:
\(\widehat{AHD}=\widehat{CED}=90^0\)
\(\widehat{HDA}=\widehat{EDC}\)( hai góc đối đỉnh )
=> Tam giác AHD ~ Tam giác CED ( g - g )
=> \(\frac{AH}{EC}=\frac{AD}{DC}\)
\(\Rightarrow AH.CD=AD.EC\)( đpcm )
c) Vì tam giác AHD ~ Tam giác CED ( cmt )
=> \(\frac{HD}{DE}=\frac{AD}{DC}\)
Xét tam giác HDE và tam giác ADC có:
\(\frac{HD}{DE}=\frac{AD}{DC}\)( cmt )
\(\widehat{HDE}=\widehat{ADC}\)( hai góc đối đỉnh )
=> Tam giác HDE ~ tam giác ADC ( g - c - g )
d) Xét tam giác ABC vuông ở A có:
Theo Pytago có:
BC2 = AB2 + AC2
hay BC2 = 62 + 82
=> BC2 = 36 + 64
=> BC2 = 100
=> BC = 10 ( cm )
Diện tích tam giác ABC là:
SABC = 1/2 . AB . AC
SABC = 1/2 . AH . BC
=> AB . AC = AH . BC
hay 6 . 8 = AH . 10
=> AH = 4,8 ( cm )
Xét tam giác AHC vuông ở H có:
Theo pytago có:
HC2 = AC2 - AH2
hay HC2 = 82 - 4,82
=> HC2 = 64 - 23,04
=> HC = 6,4 ( cm )
Ta có: BH + HD + DC = BC
=> HD + HD + DC = BC
=> 2HD + HC - HD = BC
Hay 2HD + 6,4 - HD = 10
=> HD + 6,4 =10
=> HD = 3,6 ( cm )
Ta có: HD + DC = HC
hay 3,6 + DC = 6,4
=> DC = 2,8
Vì D đối xứng với B qua H
=> AH là trung trực của DB
=> AB = AD
=> Tam giác ABD cân tại A
=> AB = AD = 6 cm
vì tam giác AHD ~ tam giác CED ( theo câu b )
=> \(\frac{HD}{DE}=\frac{AH}{EC}=\frac{AD}{DC}\)
hay \(\frac{3,6}{DE}=\frac{4,8}{EC}=\frac{6}{2,8}\)
=> EC = 4,8 . 2,8 : 6 = 2,24 ( cm )
=> DE = 3,6 . 2,24 : 4,8 = 1,68 ( cm )
Diện tích tam giác DEC là:
SDEC = 1/2 . EC . DE = 1/2 . 2,24 . 1,68 = 1,8816 ( cm2 )
e) CHo mình xin nghỉ.
vẽ hình
hình tự vẽ nhé ez
xét \(\Delta ABDvà\Delta BDC\)
+) góc ABD = góc BDC (AB SS CD)
+)\(\frac{AB}{BD}=\frac{BD}{DC}=\frac{1}{2}\)
vậy tam giác abd đồng dạng bdc (c.g.c)