Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(f\left(x\right)=m_nx^n+m_{n-1}x^{n-1}+...+m_1x+m_0\) với \(m_0;m_1;...;m_n\in Z\).
Ta có \(f\left(a\right)-f\left(b\right)=m_n\left(a^n-b^n\right)+m_{n-1}\left(a^{n-1}-b^{n-1}\right)+...+m_1\left(a-b\right)\).
Dễ thấy tổng trên chia hết cho a - b với mọi a, b nguyên.
Vậy ta có đpcm.
Giả sử f(x) = c0 + c1x + ... + cnxn với c0, c1, ..., cn là các số nguyên
f(a) - f(b) = (cn.an + ... + c1.a + c0) - (cn.bn + ... + c1.b + c0)
= cn(an - bn) + ... + c1(a - b) + (c0 - c0)
= cn(a - b)(an-1 + an-2b + ... + bn-1) + ... + c1(a - b)
= (a - b)(...) ⋮ (a - b)
Vậy bài toán đã được chứng minh
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Nguyễn Lê Phước Thịnh White Hold HangBich2001 Phạm Vũ Trí Dũng Nguyễn Huyền Trâm
Lời giải:
Đặt $f(x)=a_0+a_1x+a_2x^2+..+a_nx^n$ với $a_i$ nguyên với $i=\overline{0,n}$
Ta có:
\(f(a)=a_0+a_1a+a_2a^2+...+a_na^n; f(b)=a_0+a_1b+a_2b^2+...+a_nb^n\)
\(\Rightarrow f(a)-f(b)=a_1(a-b)+a_2(a^2-b^2)+...+a_n(a^n-b^n)\)
Dễ thấy: $a^j-b^j\vdots a-b$ với mọi $j\geq 1$ nên $f(a)-f(b)\vdots a-b$
Ta có đpcm.