Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c ) S = 1.2 + 2.3 + 3.4 + .... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3
=> 3S = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 99.100.( 101 - 98 )
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 98.99.100 - 98.99.100 ) + 99.100.101
=> 3S = 99.100.101 => S = \(\frac{99.100.101}{3}\)
d ) Ta có \(\frac{1}{2^2}<\frac{1}{2.1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}<\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
..........
\(\frac{1}{100^2}<\frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}<\frac{1}{1}-\frac{1}{100}=\frac{99}{100}<1\)
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
\(M\cdot N=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{99}{100}\cdot\frac{100}{101}=\frac{1\cdot2\cdot3\cdot...\cdot\cdot\cdot.100}{2\cdot3\cdot4\cdot...\cdot100\cdot101}\)
\(=\frac{1}{101}\)
ta có \(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
................
\(\frac{99}{100}< \frac{100}{101}\)
NHÂN VẾ VỚI VẾ \(\Rightarrow M< N\)
Bài 2 :
a, \(\left|x-\frac{5}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}< \frac{1}{3}\\x-\frac{5}{3}< -\frac{1}{3}\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 2\\x< \frac{4}{3}\end{cases}}}\)
b, \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)
\(\orbr{\begin{cases}\frac{2}{5}< x-\frac{7}{5}< \frac{3}{5}\\\frac{2}{5}< -x+\frac{7}{5}< \frac{3}{5}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{9}{5}< x< 2\\1>x>\frac{4}{5}\end{cases}}\)