K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2021

a) \(f\left(x\right)-g\left(x\right)=\left[x\left(x^2-2x+7\right)-1\right]-\left[x\left(x^2-2x-1\right)-1\right]\)

\(f\left(x\right)-g\left(x\right)=x^3-2x^2+7x-1-x^3+2x^2+x+1\)

\(f\left(x\right)-g\left(x\right)=8x\)

 \(f\left(x\right)+g\left(x\right)=x\left(x^2-2x+7\right)-1+x\left(x^2-2x-1\right)-1\)

 \(f\left(x\right)+g\left(x\right)=x^3-2x^2+7x-1+x^3-2x^2-x-1\)

 \(f\left(x\right)+g\left(x\right)=2x^3-4x^2+6x-2\)

b) 8x=0

=> x=0

=> Nghiệm đa thức f(x)-g(x)

c) Thay \(x=-\frac{3}{2}\)vào BT f(x)+g(x) ta được :

   \(2.\left(-\frac{3}{2}\right)^3-4\left(-\frac{3}{2}\right)^2+6\left(-\frac{3}{2}\right)-2\)

\(=6,75+9-9-2\)

\(=4,75\)

#H

23 tháng 7 2021
Ta có:f(x)=x(x²-2x+7)-1=x³-2x²+7x-1;g(x)=x(x²-2x-1)-1=x³-2x²-1x-1.=>f(x)-g(x)=(x³-2x²+7x-1)-(x³-2x²-1x-1)= 8x;f(x)+g(x)=x³-2x²+7x-1+x³-2x²-1x-1=2x³-4x²+6x-2; b,Ta có:f(x)-g(x)= 8x=0=>x=0 là nghiệm của đa thức f(x)-g(x). c,f(x)+g(x)=2x³-4x²+6x-2=2×(-3/2)-4×(-3/2)+6×(-3/2)-2=(-6/2)+6-9-2=-8
15 tháng 4 2019

a)f(x)+g(x)=10xmũ2-8x+ 14/3

b)f(x)-g(x)=10x mũ 2 +4x+16/3

nghiệm chưa tính ddcj nha

16 tháng 4 2019

a;\(f\left(x\right)+g\left(x\right)=\left(5x^2-2x+5\right)+\left(5x^2-6x-\frac{1}{3}\right)=25x^2-8x+\frac{1}{4}\)

b'\(f\left(x\right)-g\left(x\right)=\left(5x^2-2x+5\right)-\left(5x^2-6x-\frac{1}{3}\right)=4x+\frac{16}{3}\)

c;\(f\left(x\right)-g\left(x\right)=0\Leftrightarrow4x+\frac{16}{3}=0\)

                                         \(\Leftrightarrow4x=-\frac{16}{3}\)

                                           \(\Leftrightarrow x=-\frac{4}{3}\)

Vậy nghiệm của đa thức f(x)-g(x) là : x=-4/3

1 tháng 4 2019

\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)

\(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)

=\(4x+\frac{16}{3}\)

2 tháng 4 2019

sao làm csw mỗi câu z bạn

31 tháng 5 2016

Câu 1:    a) x = 1 là nghiệm của đa thức f(x)

              b) x = -1 là nghiệm của đa thức g(x)

              c) x = 1 là nghiệm của đa thức h(x)

Câu 2: Số 1 là ngiệm của đa thức f(x)

11 tháng 4 2019

Bài 1 :

\(M+N\)

\(=\left(2xy^2-3x+12\right)+\left(-xy^2-3\right)\)

\(=2xy^2-3x+12-xy^2-3\)

\(=\left(2xy^2-xy^2\right)-3x+\left(12-3\right)\)

\(=xy^2-3x+9\)

11 tháng 4 2019

gải hộ mình bài 2

1 tháng 5 2021

a, mình bổ sung cho đề là \(5x^2+6x-\frac{1}{3}\)( hoặc là trừ thì cũng làm tương tự :) 

Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2+6x-\frac{1}{3}=10x^2+4x+\frac{14}{3}\)

b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay 

\(5x^2-2x+5-5x^2-6x+\frac{1}{3}=-8x+\frac{16}{3}\)

c, Đặt \(-8x+\frac{16}{3}=0\Leftrightarrow-8\left(x-\frac{2}{3}\right)=0\Leftrightarrow x=\frac{2}{3}\)

Vậy x = 2/3 là nghiệm đa thức trên 

2 tháng 5 2021

a, Ta có : \(f\left(x\right)+g\left(x\right)\)hay \(5x^2-2x+5+5x^2-6x-\frac{1}{3}=10x^2-8x+\frac{14}{3}\)

b, Ta có : \(f\left(x\right)-g\left(x\right)\)hay \(5x^2-2x+5-5x^2+6x+\frac{1}{3}=4x+\frac{16}{3}\)

c, Đặt \(f\left(x\right)-g\left(x\right)=0\)hay \(4x+\frac{16}{3}=0\)

\(\Leftrightarrow4x=-\frac{16}{3}\Leftrightarrow x=-\frac{16}{8}=-2\)