Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\( \widehat{BIJ}=\widehat{BAI}+\widehat{ABI}\)
\(=\widehat{IAC}+\widehat{IBC}\) (I là tâm đường tròn nội tiếp tam giác ABC)
Xét (O) : \(\widehat{JAC}=\widehat{JBC}\)
Nên \( \widehat{BIJ}=\widehat{JBC}+\widehat{IBC}=\widehat{IBJ}\)
Suy ra tam giác BIJ cân tại J nên JB=JI
J ∈đường trung trực của BI
Chứng minh tương tự có: JI=JC nên J ∈đường trung trực của IC
Suy ra J là tâm đường tròn ngoại tiếp tam giác BIC
b, Xét O có \(\widehat{JBK} =90^o\)
nên tam giác JBK vuông tại B
BE là đường cao (OB=OC;JB=JC nên OJ trung trực BC)
suy ra \(JB^2=JE.JK\) hay \(JI^2=JE.JK\)
b, Xét (O) có\( \widehat{SBJ}=\widehat{BAJ}=\widehat{JBC} \)(góc tạo bởi tia tt và dây cung và góc nội tiếp cùng chắn cung JB)
suy ra BJ là đường phân giác trong\( \widehat{SBE}\)
\(BJ⊥ BK \)nên BK là đường phân giác ngoài tam giác SBE
suy ra\( \dfrac{SJ}{JE}=\dfrac{SK}{EK}\)
hay \(SJ.EK=SK.JE\)
c, Đặt L là tâm đường tròn bàng tiếp tam giác ABC suy ra A;J;L thẳng hàng
CL phân giác ngoài góc C;CI phân giác ngoài góc C
suy ra
JI=JC nên \(\widehat{JIC}=\widehat{JCI}\)
\( \widehat{JIC}+ \widehat{ILC}=90^o\)
\(\widehat{JCI}+ \widehat{JCL}=90^o\)
nên \(\widehat{ILC}= \widehat{JCL}\)
suy ra JC=JL nên J là trung điểm IL
Có:\( \widehat{ACL}=\widehat{ACI}+90^o\)
\(\widehat{AIB}=\widehat{ACI}+90^o\)
nên \(\widehat{ACL}=\widehat{AIB}\)
Lại có: \(\widehat{LAC}=\widehat{BAI}\)
nên tam giác ABI \(\backsim\) tam giác ALC
suy ra \(AB.AC=AI.AL\)
Có trung tuyến SB SC cát tuyến SDA nên tứ giác ABDC là tứ giác điều hòa với \(AB.DC=BD.AC=\dfrac{1}{2}.AD.BC\)
suy ra \(BD.AC=AD.EC\)
cùng với\( \widehat{BDA}=\widehat{ECA}\)
nên tam giác ABD đồng dạng AEC
suy ra \(AB.AC=AD.AE;\widehat{BAD}=\widehat{EAC}\)
vậy \(AD.AE=AI.AL;\widehat{DAI}=\widehat{LAE}\) (do AJ là phân giác góc A)
từ đây suy ra tam giác ADI\( \backsim\) tam giác ALE
nên \(\widehat{ADI}=\widehat{ALE}\)
mà \( \widehat{ADI}= \widehat{AJM}=\widehat{ALE}\)
nên JM//LE
J là trung điểm IL nên JM đi qua trung điểm IE (đpcm)
Nhớ up tài liệu lên đây để mọi người cùng tải về nha admin VICE.
1
đặt biểu thức cần chứng minh là P
có \(\sqrt{a^2+\dfrac{1}{b^2}}=\dfrac{1}{\sqrt{97}}.\sqrt{\left(a^2+\dfrac{1}{b^2}\right).\left(4^2+9^2\right)}\ge\dfrac{1}{\sqrt{97}}\left(4a+\dfrac{9}{b}\right)\)
là tương tự đối với \(\sqrt{b^2+\dfrac{1}{c^2}},\sqrt{c^2+\dfrac{1}{a^2}}\)
\(=>P\ge\)\(\dfrac{1}{\sqrt{97}}\left(4a+\dfrac{9}{b}+4b+\dfrac{9}{c}+4c+\dfrac{9}{a}\right)\)
(đến đây thấy đề sai sai vì ngược dấu )
Sáng nay đề chuyên Nguyễn Huệ khó lắm ạ mình làm được mỗi câu a. :(
các bạn khác k làm thì đừng cmt vô đây mấy bài của các bạn giải bị trôi
1, \(\)BDT AM-GM
\(=>\sqrt{a^2+b^2}\ge\sqrt{2ab}\left(1\right)\)
tương tuqj \(=>\sqrt{b^2+c^2}\ge\sqrt{2bc}\left(2\right)\)
\(=>\sqrt{c^2+a^2}\ge\sqrt{2ac}\left(3\right)\)
cộng vế (1)(2)(3)
\(=>Vt=\sqrt{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)=\sqrt{2021}\)
\(=>\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\dfrac{\sqrt{2021}}{\sqrt{2}}\)
\(=>\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\le a+b+c\)\(=>a+b+C\ge\dfrac{\sqrt{2021}}{\sqrt{2}}\)
đặt \(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
\(=>P\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{1}{2}.\dfrac{\sqrt{2021}}{\sqrt{2}}\)
dấu"=" xảy ra<=>\(a=b=c=\dfrac{\sqrt{2021}}{3\sqrt{2}}\)
không đâu, ai đẹp thì bầu thôi :v
Hạn chót deadline chưa em nhỉ :))