K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

A = x2 + 5x + 7 

   = ( x2 + 5x + 25/4 ) + 3/4

   = ( x + 5/2 )2 + 3/4

\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2

=> MinA = 3/4 <=> x = -5/2

B = 6x - x2 - 5

   = -( x2 - 6x + 9 ) + 4

   = -( x - 3 )2 + 4

\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)

Đẳng thức xảy ra <=> x - 3 = 0 => x = 3

=> MaxB = 4 <=> x = 3

C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )

   = [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]

   = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

   = ( x2 + 5x )2 - 36

\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> x = 0 hoặc x = -5

=> MinC = -36 <=> x = 0 hoặc x = -5

22 tháng 8 2020

Thank bn.😊😉

21 tháng 7 2020

a) P = 2x2 - x4 + 2

        = -x4 + 2x2 + 2

Đặt t = x2 ( t ≥ 0 )

Khi đó P trở thành : 

-t2 + 2t + 2

= -t2 + 2t - 1 + 3

= -( t2 - 2t + 1 ) + 3

= -( t - 1 )2 + 3 

( t - 1 )2 ≥ 0  ∀ x => -( t - 1 )2 ≤ 0  ∀ x

=> -( t - 1 ) + 3 ≤ 3  ∀ x

Dấu bằng xảy ra <=> t - 1 = 0 => t = 1 ( tmđk )

Với t = 1 => x2 = 1 

               => x = ±1

Vậy PMax = 3 với x = ±1

b) Q = x - x2 

        = -x2 + x

        = -( x2 - x )

        = -[ x2 - 2.1/2x + (1/2)2 ] + 1/4

        = -( x - 1/2 )2 + 1/4 

( x - 1/2 )2 ≥ 0  ∀ x => -( x - 1/2 )2 ≤ 0  ∀ x

=> -( x - 1/2 )2 + 1/4 ≤ 1/4  ∀ x

Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2

Vậy QMax = 1/4 khi x = 1/2

c) M = 2x - x2 - 2020

        = -x2 + 2x - 2020

        = -x2 + 2x - 1 - 2019

        = -( x2 - 2x + 1 ) - 2019

        = -( x - 1 )2 - 2019

( x - 1 )2 ≥ 0  ∀ x => -( x - 1 )2 ≤ 0  ∀ x

=>  -( x - 1 )2 - 2019 ≤ -2019  ∀ x

Dấu bằng xảy ra <=> x - 1 = 0 => x = 1

Vậy MMax = -2019 khi x = 1

d) N = 2x - 2x2 - 3

        = -2x2 + 2x - 3

        = -2( x2 - x + 1/4 ) - 5/2 

        = -2( x - 1/2 )2 - 5/2

( x - 1/2 )2  ≥ 0  ∀ x => -2( x - 1/2 )2  ≤ 0  ∀ x

=>  -2( x - 1/2 )2 - 5/2  ≤ -5/2  ∀ x

Dấu bằng xảy ra <=> x - 1/2 = 0 => x = 1/2 

Vậy NMax = -5/2 khi x = 1/2

19 tháng 9 2020

Câu 1.

B = ( 3x + 5 )( 2x + 1 ) + ( 4x - 1 )( 3x + 2 )

= 6x2 + 3x + 10x + 5 + 12x2 + 8x - 3x - 2

= 18x2 + 18x + 3

| x | = 2 => x = ±2

Với x = 2 => B = 18.22 + 18.2 + 3 = 111

Với x = -2 => B = 18.(-2)2 + 18.(-2) + 3 = 39

C = ( 2x + y )( 2x + y ) + ( x - y )( y - z )

= 4x2 + 4xy + y2 + xy - xz - y2 + yz

= 4x2 + 5xy - xz + yz

Với x = 1 ; y = 1 ; z = 1 => C = 4.12 + 5.1.1 - 1.1 + 1.1 = 9

Câu 2.

Gọi ba số tự nhiên cần tìm là a ; a + 1 ; a + 2 ( a ∈ N )

Theo đề bài ta có :

( a + 1 )( a + 2 ) - a( a + 1 ) = 50

<=> a2 + 3a + 2 - a2 - a = 50

<=> 2a + 2 = 50

<=> 2a = 48

<=> a = 24 ( tmđk )

=> a + 1 = 25 ; a + 2 = 26

Vậy ba số cần tìm là 24 ; 25 ; 26 

Câu 3.

Sửa đề một chút : ( x + y )( x3 - x2y + xy2 - y ) = x4 - y4

( x + y )( x3 - x2y + xy2 - y3 )

= x4 - x3y + x2y2 - xy3 + x3y - x2y2 + xy3 - y4

= x4 - y4 ( đpcm )

Câu 1 :

\(a,B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)

\(=6x^2-3x+10x-5+12x^2+8x-3x-2\)

\(=\left(6x^2+12x^2\right)+\left(-3x+10x+8x-3x\right)+\left(-5-2\right)\)

\(=18x^2-4x-7\)

Với \(|x|=2\Rightarrow x=\pm2\)

Với x = 2 => \(B=18.2^2-4.2-7=72-8-7=57\)

Với x = -2 => \(B=18.\left(-2\right)^2-4.\left(-2\right)-7=73\)

Câu b tương tự

Câu 2 :

Gọi 3 số tự nhiên cần tìm là a , a+1 , a+2 .

Vì tích của hai số đầu hỏ hơn tích của hai số sau là 50 nên ta có :

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=50\)

\(\Leftrightarrow a^2+2a+a+2-a^2-a=50\)

\(\Leftrightarrow\left(a^2-a^2\right)+\left(a-a\right)+2a=50-2\)

\(\Leftrightarrow2a=48\)

\(\Leftrightarrow a=24\)

Vậy ba số tự nhiên cần tìm lần lượt là 24,25,26 .

Câu 3 :

Ta có :

\(\left(x+y\right)\left(x^3-x^2y+xy^2-y^3\right)\)

\(=x^4-x^3y+x^2y^2-xy^3+yx^3-x^2y^2+xy^3-y^4\)

\(=x^4+\left(-x^3y+yx^3\right)+\left(x^2y^2-x^2y^2\right)+\left(-xy^3+xy^3\right)-y^4\)

\(=x^4-y^4\)

=> đpcm 

13 tháng 2 2016

Đề yêu cầu tính gì bạn?

14 tháng 2 2016

cai yeu cau cua bai

14 tháng 2 2016

Theo đề bài,  ta có:

Vì  \(x^4+6x^2+25\)  chia hết cho  \(P\left(x\right)\)  \(\Rightarrow\)  \(3\left(x^4+6x^2+25\right)\)  chia hết cho  \(P\left(x\right)\)

                                    và  \(3x^4+4x^2+28x+5\)  chia hết cho  \(P\left(x\right)\)

nên  \(\left[3\left(x^4+6x^2+25\right)-\left(3x^4+4x^2+28x+5\right)\right]\)  chia hết cho  \(P\left(x\right)\)

\(\Leftrightarrow\)  \(\left(3x^4+18x^2+75-3x^4-4x^2-28x-5\right)\)  chia hết cho  \(P\left(x\right)\)

\(\Leftrightarrow\)  \(14x^2-28x+70\)  chia hết cho  \(P\left(x\right)\)

\(\Leftrightarrow\)  \(x^4-2x+5\)  chia hết cho  \(P\left(x\right)\), tức  \(x^4-2x+5\)  chia hết cho  \(x^2+bx+c\)  \(\left(\text{*}\right)\)

Mà  \(b;\)  \(c\)  là các số nguyên nên từ \(\left(\text{*}\right)\), suy ra  \(b=-2;\)  \(c=5\)

Khi đó,  \(P\left(1\right)=1^2-2.1+5=4\)

14 tháng 2 2016

tks nha ban

 

18 tháng 9 2015

Ta sử dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right).\)

Theo giả thiết \(a+b+c=9,a^2+b^2+c^2=53\to81=53+2\left(ab+bc+ca\right)\to\)

\(ab+bc+ca=\frac{81-53}{2}=\frac{28}{2}=14\to A=3\left(ab+bc+ca\right)=52.\)

2.  Ta có \(4x^2-12x-1=-10\to\left(2x\right)^2-2\cdot2x\cdot3+9=0\to\left(2x-3\right)^2=0\to2x-3=0\to x=\frac{3}{2}.\)

2 tháng 8 2018

A = 4x2 - 12x + 13

   = (4x2 - 12x + 9) + 4

   = 4(x2 - 3x + \(\frac{9}{4}\) ) + 4

  A = 4(x - \(\frac{3}{2}\) )2 + 4

Vì : (x - \(\frac{3}{2}\) )2  \(\ge0\forall x\)

Nên : 4(x - \(\frac{3}{2}\) )2  \(\ge0\forall x\)

Vậy A = 4(x - \(\frac{3}{2}\) )2 + 4 \(\ge4>0\forall x\)

2 tháng 8 2018

Cho mh hỏi dấu \(\forall\)là dấu j thế ạ . Có phải là vs mọi x ko

Mơn emdixaqua nhá !!!

2 tháng 4 2020

a, đkxđ:x# 2 ,  x# -2

b, 

     A  =   \(\frac{x+1}{x-2}\)=0

<=>      x + 1 = 0

<=>      x = -1

c,B=\(\frac{x2}{x^2-4}\)

Mà x= \(-\frac{1}{2}\)

<=> \(\frac{1}{4}:\left(\frac{1}{4}-4\right)\)

<=>\(\frac{1}{4}:\frac{-15}{4}\)

<=>\(\frac{1}{4}.\frac{4}{-15}\)

<=>\(\frac{-1}{15}\)

d, \(A-B=\frac{x+1}{x-2}-\frac{x^2}{x^2-4}\)

                \(=\frac{\left(x+1\right)\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\)

                \(=\frac{x^2+3x+2-x^2}{\left(x-2\right)\left(x+2\right)}\)

                \(=\frac{3x+2}{\left(x-2\right)\left(x+2\right)}\)