Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 151 - 291 : 288 + 12 . 3
= 151 - 23 + 1 . 3
= 151 - 8 + 3
= 143 + 3
= 146
b) 1449 - { [ ( 216 +184 ) : 8 ] . 9 }
= 1449 - { [ 400 : 8 ] . 9 }
= 1449 - { 50 . 9 }
= 1449 - 450
= 999
c) 23 . 75 + 25 . 23 + 180
= 23 . ( 75 + 25 ) + 180
= 23 . 100 + 180
= 2300 + 180
= 2480
d) 80 - ( 4 . 52 - 3 . 23 )
= 80 - ( 4 . 25 - 3 . 8 )
= 80 - ( 100 - 24 )
= 80 - 76
= 4
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)
Ta có : \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(=1-\frac{1}{2}+...+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}=\frac{8}{9}(1)\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)
\(=\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{2}-\frac{1}{10}=\frac{8}{20}=\frac{2}{5}(2)\)
Từ 1 và 2 => \(\frac{8}{9}>A>\frac{2}{5}\)
\(\Rightarrow(đpcm)\)
Ta có: \(\frac{1}{1.2}>\frac{1}{2^2 }\)
\(\frac{1}{2.3}>\frac{1}{3^2}\)
. . .
\(\frac{1}{8.9}>\frac{1}{9^2}\)
\(\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}>A\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}>A\)
\(\Rightarrow1-\frac{1}{9}>A\)
\(\Rightarrow\frac{8}{9}>A \left(1\right)\)
Ta lại có:
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
. . .
\(\frac{1}{9^2}>\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A>\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow A>\frac{2}{5}\left(2\right)\)
Từ (1) và (2) => \(\frac{8}{9}>A>\frac{2}{5}\)
Chúc bạn hok tốt !!!
bạn đã chọn gửi toán lớp 1 thì bạn không được hỏi những câu hỏi ko phải toán lớp 1 nhé
Vì a,b,c là 3 số phân biệt nên nhiều nhất sẽ có 1 số bằng 0
Gỉa sử a = 0 thì ... ( tự làm:v )
Nên A khác 0
Tương tự giả sử lần lượt b và c ta có điều phải chứng minh
Cách của t đấy , làm theo ý nghĩ
Câu 9:
\(a,\left(a+1\right)^2\ge4a\\ \Leftrightarrow a^2+2a+1\ge4a\\ \Leftrightarrow a^2-2a+1\ge0\\ \Leftrightarrow\left(a-1\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=1\)
\(b,\) Áp dụng BĐT cosi: \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}\cdot2\sqrt{b}\cdot2\sqrt{c}=8\sqrt{abc}=8\)
Dấu \("="\Leftrightarrow a=b=c=1\)
Câu 10:
\(a,\left(a+b\right)^2\le2\left(a^2+b^2\right)\\ \Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\\ \Leftrightarrow a^2-2ab+b^2\ge0\\ \Leftrightarrow\left(a-b\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b\)
\(b,\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3a^2+3b^2+3c^2\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(luôn.đúng\right)\)
Dấu \("="\Leftrightarrow a=b=c\)
Câu 13:
\(M=\left(a^2+ab+\dfrac{1}{4}b^2\right)-3\left(a+\dfrac{1}{2}b\right)+\dfrac{3}{4}b^2-\dfrac{3}{2}b+2021\\ M=\left[\left(a+\dfrac{1}{2}b\right)^2-2\cdot\dfrac{3}{2}\left(a+\dfrac{1}{2}b\right)+\dfrac{9}{4}\right]+\dfrac{3}{4}\left(b^2-2b+1\right)+2018\\ M=\left(a+\dfrac{1}{2}b-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(b-1\right)^2+2018\ge2018\\ M_{min}=2018\Leftrightarrow\left\{{}\begin{matrix}a+\dfrac{1}{2}b=\dfrac{3}{2}\\b=1\end{matrix}\right.\Leftrightarrow a=b=1\)
Câu 6:
$2=(a+b)(a^2-ab+b^2)>0$
$\Rightarrow a+b>0$
$4(a^3+b^3)-N^3=4(a^3+b^3)-(a+b)^3$
$=3(a^3+b^3)-3ab(a+b)=(a+b)(a-b)^2\geq 0$
$\Rightarrow N^3\leq 4(a^3+b^3)=8$
$\Rightarrow N\leq 2$
Vậy $N_{\max}=2$