Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
a) Có 2 cách xếp.
Bạn A có 6! cách.
Bạn B có 6! cách.
Đổi vị trí A,B có tất cả 2*(6!)2 cách xếp chỗ.
b) Chọn 1 học sinh A vào vị trí bất kì: 12 cách.
Chọn 1 học sinh B đối diện A có 6 cách.
Cứ chọn liên tục như vậy ta được:
\(\left(12\cdot6\right)\cdot\left(10\cdot5\right)\cdot\left(8\cdot4\right)\cdot\left(6\cdot3\right)\cdot\left(4\cdot2\right)\cdot\left(2\cdot1\right)=2^6\cdot\left(6!\right)^2\)
cách xếp chỗ để hai bạn ngồi đối diện thì kkhasc trường nhau.
Ta có 4 trường hợp sau :
Ghế thứ 6, 7, 8 trống ;
Ghế thứ 1, 7, 8 trống ;
Ghế thứ 1, 2, 8 trống ;
Ghế thứ 1, 2, 3 trống.
Mỗi cách xếp trên có 5! cách xếp 5 người ngồi vào 5 ghế còn lại ( khác các ghế trống ) . Vậy có tất cả 4.5! = 480 cách xếp.
Chọn B.
Xếp 6 học sinh trường A vào 1 dãy ghế: 6! cách
Xếp 6 học sinh trường B vào dãy còn lại: 6! cách
Lúc này hai học sinh đối diện luôn khác trường, có 6 cặp như vậy, mỗi cặp có 2 cách hoán vị nên có \(2^6\) cách hoán vị
Tổng cộng: \(6!.6!.2^6\) cách xếp thỏa mãn
- Đếm số cách để A và B ngồi cạnh nhau, C ngồi vị trí bất kì:
Coi A, B là một người, có \(2!\) cách xếp vị trí A, B.
Khi đó ta xếp vị trí của 9 người: \(9!\).
Có tổng số cách xếp là: \(2!.9!\).
- Đếm số cách để A và B ngồi cạnh nhau, C ngồi cạnh A.
Coi A, B, C là một người. Có 2 cách xếp thỏa mãn là CAB, BAC.
Khi đó ta xếp vị trí của \(8\) người: \(8!\).
Có số cách xếp là: \(2.8!\).
Vậy số cách xếp để A và B ngồi cạnh nhau, A và C không ngồi cạnh nhau là \(2!.9!-2.8!\).
· Gọi nhóm I là nhóm ghế của 4 bạn nam, số cách xếp là 4!, tương tự với 2 bạn nữ là nhóm II với số cách xếp là 2!.
· Rõ ràng khi xếp 6 bạn này vào hàng 9 ghế thì ta còn 3 ghế trống. Chia 9 hàng ghế này thành 5 phần có thứ tự, trong đó 2 phần bất kì nào dành cho nhóm I và nhóm II thì 3 phần còn lại sẽ là 3 chiếc ghế trống.
· Số cách xếp 2 nhóm vào 9 hàng ghế sao cho nam ngồi liền nhau, nữ ngồi liền nhau là: Coi nhóm I, nhóm II và 1 ghế trống ở giữa 2 nhóm này là 1 nhóm đại diện, số nhóm đại diện là 2!. Lúc này 9 ghế hàng ngang thì còn lại 2 ghế trống. Tương tự chia 9 hàng ghế làm 3 phần với ý tưởng khi nhóm đại diện rơi vào 1 phần nào đó thì 2 phần còn lại sẽ là ghế trống, khi đó số cách xếp nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có đúng 1 ghế trống là:
Vậy số cách xếp cần tìm là:
chọn B.
Ta coi ba ghế nam ngồi là một nhóm; 2 ghế nữ ngồi là một nhóm; mội ghế trống là một nhóm. Ta có 5 nhóm.
Chọn 2 nhóm ghế để xếp nam và nữ có cách. Trong số đó có 8 cách xếp nhóm nam và nhóm nữ ngồi kề nhau.
Do đó ta có 20-8=12 cách chọn vị trí để xếp nam và nữ thỏa bài toán. Ứng với mỗi cách xếp trên , ta có 3! cách xếp chỗ cho nam vào ba ghế dành cho nam và có 2! cách xếp 2 nữ ngồi vào 2 vị trí dành cho nữ.
Vậy ta có tất cả 12.3!.2!=144 cách xếp thỏa yêu cầu bài toán.
Chọn C.
Vì các bạn nữ luôn ngồi gần nhau nên ta coi 4 bạn nữ là x
=> Có 4! cách xếp x
số cách xếp 5 học sinh nam và x là :
6!.4! = 17280 (cách)