K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2016

toán j mà dễ thế  Trần Khánh Toàn

avt504911_60by60.jpg
2 tháng 2 2016

minh moi hok lop 6

1 tháng 2 2016

a)(x-2)(x+2)(x^2-10)=72

<=>(x^2-4)(x^2-10)=72

<=>x^4-14x^2+40=72

<=>x^4-14x^2-32=0

<=>x^4-16x^2+2x^2-32=0

<=>x^2(x^2-16)+2(x^2-16)=0

<=>(x^2-16)(x^2+2)=0

<=>(x-4)(x+4)(x^2+2)=0

<=>x-4=0 hoac x+4=0 (vi x^2+2>0 voi moi x)

<=>x=4,x=-4

S={4,-4}

 

 

31 tháng 1 2016

a)(x-2))x+2)(x^2-10)=72

=(x^2-4)(x^2-10)=72

Đặt x^2-7 là t

Phương trình trở thành (t+3)(t-3)=72

                                    t^2-9=72

                                    t^2=81

                         suy ra t= cộng trừ 9

*t=9

x^2-7=9

x^2=16

suy ra x=cộng trừ 4

*t=-9

x^2-7=-9

x^2=-2

suy ra x không xác định

vậy S={cộng trừ 4}

21 tháng 10 2018

Giải hết không nổi =.= đành giải vài bài thôi :v . Lần sau bạn nên đăng từ từ để người giải bớt ngán nhé!

Bài 1

a) \(2\left(x+5\right)=x^2+5x\)

\(\Leftrightarrow2x+10=x^2+5x\)

\(\Leftrightarrow x^2+5x-2x=10\)

\(\Leftrightarrow x^2+3x=10\Leftrightarrow x\left(x+3\right)=10\Leftrightarrow\hept{\begin{cases}x=-5\\x=2\end{cases}}\) (ở đây lười kẻ bảng quá =((( )

b) \(x\left(x-2\right)+x-2=0\)

\(\Leftrightarrow x^2-2x+x=2\Leftrightarrow x^2-x=2\)

\(\Leftrightarrow x\left(x-1\right)=2\Leftrightarrow\hept{\begin{cases}x=-1\\x=2\end{cases}}\) (bạn kẻ bảng ra các ước của 2 là thấy)

21 tháng 10 2018

:v lời giải bài 1 đang chờ duyệt. Mình giải tiếp bài 2

Bài 2

a) \(2x\left(x^2-3\right)=2x^3-6x\)

b) \(x\left(x^2-2x+5\right)=x^3-2x^2+5x\)

c) \(\left(x+2y\right)\left(x+2y^2-5xy\right)\)

\(=x\left(x+2y^2-5xy\right)+2y\left(x+2y^2-5xy\right)\)

\(=x^2+2xy^2-5x^2y+2xy+4y^3-10xy^2\)

\(=4y^3+x^2-8xy^2-5x^2y+2xy\)

d)Tương tự bài c)

16 tháng 8 2018

Bài 1:

  a) (3x-2).(4x+5)-6x.(2x-1) = 12x^2 +15x - 8x -10 - 12x^2 + 6x = 13x - 10

b) (2x-5)^2 - 4.(x+3).(x-3) = 4x^2 - 20x + 25 - 4x^2 + 12x -12x + 36 = -20x + 61

Bài 2:

a)(2x-1)^2-(x+3)^2 = 0

   <=> (2x-1-x-3).(2x-1+x+3) =0

   <=>(x-4).(3x+2) = 0

<=> x-4 = 0 hoặc 3x+2=0 

              *x-4=0    =>   x=4

              *3x+2 = 0     => 3x=-2   => x=-2/3

b)x^2(x-3)+12-4x=0       <=>     x^2(x-3) - 4(x-3) =0     <=>       (x-3).(x-2)(x+2)   <=> x-3=0 hoặc x-2=0  hoặc x+2 =0

                                                                                        *x-3=0  => x=3

                                                                                        *x-2=0    =>x=2

                                                                                        *x+2=0   =>x=-2

c)  6x^3 -24x =0  <=> 6x(x^2 -4)=0    <=> 6x(x-2)(x+2)=0    <=>  x=0 hoặc x-2 =0 hoặc x+2=0  <=> x=0 hoặc x=2  hoặc x=-2

16 tháng 5 2019

chú m lộn cak

mnjnnn 
  
  
1 tháng 10 2020

a)(ab−1)2+(a+b)2

=a2b2−2ab+1+a2+2ab+b2

=a2b2+1+a2+b2=a2(b2+1)+(b2+1) = (a2+1)(b2+1)

c)x3−4x2+12x−27

=x3−27+(−4x2+12x)

=(x−3)(x2+3x+9)−4x(x−3)

=(x−3)(x2+3x+9−4x)

=(x−3)(x2−x+9)

b)x3+2x2+2x+1

=x3+2x2+x+x+1

=x(x2+2x+1)+(x+1)

=x(x+1)2+(x+1)

=(x+1)(x(x+1)+1)

=(x+1)(x2+x+1)

d)x4−2x3+2x−1

=x4−2x3+x2−x2+2x−1

=x2(x2−2x+1)−(x2−2x+1)

=(x2−2x+1)(x2−1)

=(x−1)2(x−1)(x+1)

=(x−1)3(x+1)

e)x4+2x3+2x2+2x+1

=x4+2x3+x2+x2+2x+1

=x2(x2+2x+1)+(x2+2x+1)

=(x2+2x+1)(x2+1)

=(x+1)2(x2+1)

29 tháng 1 2020

Câu d : \({2x \over x+1}\) + \({18\over x^2+2x-3}\) = \({2x-5 \over x+3}\)

29 tháng 1 2020

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-4x+x-2=0\right)\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2-4\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x-2\right)\left(x+2\right)+\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(x+1\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-1\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\pm2;-1\right\}\)

b) \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=0\)

\(\Leftrightarrow x-2=0\)hoặc \(x+2=0\)hoặc \(x^2-10=0\)

\(\Leftrightarrow x=2\)hoặc \(x=-2\)hoặc \(x=\pm\sqrt{10}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{\pm2;\pm\sqrt{10}\right\}\)

c) \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\2x^2+5x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\left(tm\right)\\2\left(x+\frac{5}{4}\right)^2+\frac{7}{16}=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1\right\}\)

d) Xem lại đề

23 tháng 5 2015

5x ( x + 1 ) ( x - 1 ) > 0

đầu tiên , giải quyết cho 5x ( x + 1 ) ( x - 1 ) = 0

5x = 0 x = 0

5x ( x + 1 ) ( x - 1 ) = 0 - > x + 1 = 0 - > x = -1

x - 1 = 0 x = 1

23 tháng 5 2015

a) 5x ( x - 1 ) - ( 1 - x ) = 0

=> 5x(x - 1) - 1 + x = 0

=> 5x(x - 1) + (x - 1) = 0

=> (x - 1)(5x + 1) = 0

=> x - 1  = 0 hoặc 5x + 1 = 0

+) x - 1 = 0 => x = 1

+) 5x + 1 = 0 => 5x = -1

=> x = -1/5

22 tháng 9 2020

a) x3 - 9x2 + 14x = 0

<=> x( x2 - 9x + 14 ) = 0

<=> x( x2 - 2x - 7x + 14 ) = 0

<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0

<=> x( x - 2 )( x - 7 ) = 0

<=> x = 0 hoặc x = 2 hoặc x = 7

b) x3 - 5x2 + 8x - 4 = 0

<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0

<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0

<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0

<=> x( x - 2 )2 - ( x - 2 )2 = 0

<=> ( x - 2 )2( x - 1 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

c) x4 - 2x3 + x2 = 0

<=> x2( x2 - 2x + 1 ) = 0

<=> x2( x - 1 )2 = 0

<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

d) 2x3 + x2 - 4x - 2 = 0

<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0

<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0

<=> ( 2x + 1 )( x2 - 2 ) = 0

<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)