Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://tailieu.vn/doc/de-kiem-tra-hoc-ki-1-mon-toan-lop-7-nam-2015-2016-phong-gd-dt-ninh-hoa-1825544.html
Câu 1: (3 điểm)
Hãy chọn câu trả lời đúng trong các bài tập sau đây và ghi vào bài làm của mình chữ cái đứng trước câu trả lời đó.
1) Kết quả của phép tính -5/12 + (-1)/4 là:
A. -6/12 B. -8/12 C. 8/12 D. 6/12
2) Biết rằng -3/4 = x/5. Giá trị của x bằng:
A. -20/3 B. -15/4 C. 2 D. -2
3) Cho ΔABC và ΔMNP như hình vẽ:
Ta có đẳng thức sau:
A. góc A = góc M C. góc M = góc B
B. góc M = góc C D. góc A = góc N
4) Giá trị của biểu thức M = (3 - 2,5) - [5 - (-1,5)] là:
A. 4 B. 1 C. -6 D. -3
5) Cho một đường thẳng cắt hai đường thẳng song song. Khi đó số cặp góc đồng vị bằng nhau được tạo thành là:
A. 1 B. 6 C. 8 D. 4
6) Cho hàm số y = f(x) = -2x + 1. Khẳng định nào sau đây là đúng:
A. f(-1) = 3 B. f(0) = 1 C. f(1/2) = 1 D. f(2) = 1/3
Câu 2: (1,5 điểm)
Tính giá trị của các biểu thức sau:
Câu 3: (1,5 điểm)
Biết độ dài ba cạnh của một tam giác tỉ lệ với 2; 5; 9. Tính độ dài mỗi cạnh của một tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.
Câu 4: (3 điểm)
Cho tam giác ABC, có góc A = 900. Tia phân giác BE của góc ABC (E ∈ AC). Trên BC lấy M sao cho BM = BA.
a) Chứng minh ΔBEA = ΔBEM.
b) Chứng minh EM ⊥ BC.
c) So sánh góc ABC và góc MEC
Câu 5: (1 điểm)
Tìm các số nguyên n sao cho biểu thức sau là số nguyên:
Gọi số bài kiểm tra trc đó là x \(\Rightarrow\)tổng điểm của x bài kiểm tra lúc này là a.
Theo đề ta có: \(\frac{a+10}{x+1}=9\)(1) và \(\frac{a+7,5}{x+1}=8,5\)(2)
Lấy (1) trừ (2) vế theo vế, ta có:
\(\frac{a+10}{x+1}-\frac{a+7,5}{x+1}=9-8,5\)
\(\Rightarrow\frac{2,5}{x+1}=0,5\)
\(\Rightarrow\left(x+1\right).0,5=2,5\)
\(\Rightarrow\frac{1}{2}x+0,5=2,5\)
\(\Rightarrow\frac{1}{2}x=2\Rightarrow x=4\)
Vậy bạn An đã có trước đó 4 bài kt.
Nếu tính thêm bài kt vừa rồi thì An sẽ có tổng cộng 5 bài.
Nhớ k vs kb với mình nha mn.
Câu 1 :
Ta có \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\)
Đặt : \(\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}=k\)
\(\Rightarrow a=2k;b=\frac{3k}{2};c=\frac{4k}{3}\)
Do : \(a-b=15\)
\(\Rightarrow2k-\frac{3k}{2}=\frac{k}{2}=5\)
\(\Rightarrow k=5.2=10\)
\(\Rightarrow a=2.10=20\)
\(\Rightarrow b=\frac{3.10}{2}=15\)
\(\Rightarrow c=\frac{40}{3}\)
BÀI 2 mak k bt(viết cái đề cx sai nói gì làm!):
\(\left(2008\cdot a+3b+1\right)\left(2008^a+2008a+b\right)=225\)
=> cả 2 thừa số đều lẻ.
=>\(2018^a+2018a+b\)là số lẻ (1)
Với a khác 0,từ (1) suy ra:
b lẻ.
=>3b+1 chẵn
=>2008a+3b+1 chẵn(loại)
=>a=0,thay vào đề bài,ta có:
(3b+1)(b+1)=225=3*75= 5*45=9*25
do 3b+1>b+1 và 3b+1 không chia hết cho 3
\(\Rightarrow\hept{\begin{cases}3b+1=25\\b+1=9\end{cases}\Rightarrow}b=8\)
vậy:a=0,b=8
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
https://dethi.violet.vn/category/toan-7-1179.html
#Châu's ngốc
a,Ta có : N(4:9)
vì đồ thị hàm số đi qua điểm N(4;9)
nên x=4;y=9 thay vào hàm số
Ta có :9=a.4=> a=\(\frac{9}{4}\)
vậy hàm số có dạng y=\(\frac{9}{4}\)x
Bài 1: Thực hiện phép tính:
Bài 2: Tìm x, biết:
Bài 3:
Ba đội máy cày có 18 máy (có cùng năng suất) làm việc trên 3 cánh đồng có cùng diện tích. Đội 1 làm xong trong 3 ngày, đội 2 trong 4 ngày và đội 3 trong 6 ngày. Hỏi mỗi đội có mấy máy?
Bài 4: Cho ABC có AB = AC, M là trung điểm của BC.
a. Chứng minh: ABM = ACM.
b. Trên tia đối của MA lấy D sao cho MD = MA. Chứng minh: AC = BD.
c. Chứng minh: AB // CD.
d. Trên nửa mặt phẳng bờ là AC không chứa B, vẽ tia Ax // BC, lấy IAx sao cho AI = BC. Chứng minh: D, C, I thẳng hàng.
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Cần lòi giải liên hệ với mình nha !
DẠNG 1: DÃY SỐ MÀ CÁC SỐ HẠNG CÁCH ĐỀU
Bài 1: Tính B = 1 + 2 + 3 + ... + 98 + 99
Lời giải:
Cách 1:
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Lời bình: Tổng B gồm 99 số hạng, nếu ta chia các số hạng đó thành cặp (mỗi cặp có 2 số hạng thì được 49 cặp và dư 1 số hạng, cặp thứ 49 thì gồm 2 số hạng nào? Số hạng dư là bao nhiêu?), đến đây học sinh sẽ bị vướng mắc.
Ta có thể tính tổng B theo cách khác như sau:
Cách 2:
Bài 2: Tính C = 1 + 3 + 5 + ... + 997 + 999
Lời giải:
Cách 1:
Từ 1 đến 1000 có 500 số chẵn và 500 số lẻ nên tổng trên có 500 số lẻ.
Áp dụng các bài trên ta có C = (1 + 999) + (3 + 997) + ... + (499 + 501) = 1000.250 = 250.000 (Tổng trên có 250 cặp số)
Cách 2: Ta thấy:
1= 2.1 - 1
3 = 2.2 - 1
5 = 2.3 - 1
...
999 = 2.500 - 1
Quan sát vế phải, thừa số thứ 2 theo thứ tự từ trên xuống dưới ta có thể xác định được số các số hạng của dãy số C là 500 số hạng.
Áp dụng cách 2 của bài trên ta có:
Bài 3. Tính D = 10 + 12 + 14 + ... + 994 + 996 + 998
Nhận xét: Các số hạng của tổng D đều là các số chẵn, áp dụng cách làm của bài tập 3 để tìm số các số hạng của tổng D như sau:
Ta thấy:
10 = 2.4 + 2
12 = 2.5 + 2
14 = 2.6 + 2
...
998 = 2.498 + 2
Tương tự bài trên: từ 4 đến 498 có 495 số nên ta có số các số hạng của D là 495, mặt khác ta lại thấy: 495 = (998 - 10)/2 + 1 hay số các số hạng = (số hạng đầu - số hạng cuối) : khoảng cách rồi cộng thêm 1
Khi đó ta có:
2D = 1008.495 → D = 504.495 = 249480
Thực chất D = (998 + 10).495 / 2
Qua các ví dụ trên, ta rút ra một cách tổng quát như sau: Cho dãy số cách đều u1, u2, u3, ... un (*), khoảng cách giữa hai số hạng liên tiếp của dãy là d.
Khi đó số các số hạng của dãy (*) là:
Tổng các số hạng của dãy (*) là:
Đặc biệt từ công thức (1) ta có thể tính được số hạng thứ n của dãy (*) là: un = u1+ (n - 1)d
Hoặc khi u1 = d = 1 thì
DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Lời giải:
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Lời giải
Áp dụng tính kế thừa của bài 1 ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)